Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium salts, coupling nucleophilic aromatic

Synthesis. Almost without exception, azo dyes ate made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile. The diazotization reaction is carried out by treating the primary aromatic amine with nitrous acid, normally generated in situ with hydrochloric acid and sodium nitrite. The nitrous acid nitrosates the amine to generate the N-nitroso compound, which tautomerizes to the diazo hydroxide. [Pg.273]

A diazonium salt is a weak electrophile, and thus reacts only with highly electron-rich species such as amino and hydroxy compounds. Even hydroxy compounds must be ionized for reaction to occur. Consequendy, hydroxy compounds such as phenols and naphthols are coupled in an alkaline medium (pH > of phenol or naphthol typically pH 7—11), whereas aromatic amines such as N,N diaLkylamines are coupled in a slightly acid medium, typically pH 1—5. This provides optimum stabiUty for the dia2onium salt (stable in acid) without deactivating the nucleophile (protonation of the amine). [Pg.273]

Diazonium salts react with various nucleophiles in water (Eq. 11.62).106 In acidic aqueous solution, p-pheny I e ncbis di azo ni um ion reacts with alcohols more rapidly than it does with water.107 In the presence of nucelophiles such as halides, the substitution products are obtained. Furthermore, diazonium salts of aromatic compounds are excellent substrates for palladium-catalyzed coupling reactions such as the Heck-type reactions in water. [Pg.362]

N-Alkylation of primary aromatic amines increases their nucleophilic character, making them couple much more readily, the introduction of the azo group occurring in the 4-position. Thus, in contrast to aniline, N-methylaniline couples readily and N,N-dimethyl-aniline very readily with simple diazonium salts. Diphenylamine also couples in the 4-position, but less readily than N-methylaniline. [Pg.189]

Accordingly, many reactions can be performed on the sidewalls of the CNTs, such as halogenation, hydrogenation, radical, electrophilic and nucleophilic additions, and so on [25, 37, 39, 42-44]. Exhaustively explored examples are the nitrene cycloaddition, the 1,3-dipolar cycloaddition reaction (with azomethinylides), radical additions using diazonium salts or radical addition of aromatic/phenyl primary amines. The aryl diazonium reduction can be performed by electrochemical means by forming a phenyl radical (by the extrusion of N2) that couples to a double bond [44]. Similarly, electrochemical oxidation of aromatic or aliphatic primary amines yields an amine radical that can be added to the double bond on the carbon surface. The direct covalent attachment of functional moieties to the sidewalls strongly enhances the solubility of the nanotubes in solvents and can also be tailored for different... [Pg.131]

Almost without exception, azo dyes are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile. [Pg.513]

Although coupling of aryl diazonium salts at the -position of dienamines yields indazoles on acid-catalysed cyclization, the presence of an electron-donor substituent may render the aromatic ring sufficiently nucleophilic to cyclize onto the iminium group to give cinnolines or 6,7-diazasteroids2,67 (Scheme 40). [Pg.1561]

Azoic dyes. Azo dyes contain at least one azo group (—N=N—) attached to one or often two aromatic rings. They are produced in textile fibers (usually cotton, rayon, and polyester), by diazotization of a primary aromatic amine followed by coupling of the resulting diazonium salt with an electron-rich nucleophile (azo coupling). A variety of hues can be obtained... [Pg.263]

Mechanical addressing can be also used for combinatorial postsynthetical modifications of conductive polymers. Postsynthetical modification was applied to formations of a number of different derivates of polyaniline (Fig. 13.4), the modification was performed by nucleophilic addition (Fig. 13.4), coupling with diazonium salts and by electrophilic aromatic substitution.46... [Pg.320]

Aryl diazonium salts can also undergo coupling reactions with phenol or aromatic amines, which possess nucleophilic OH or NH2 groups, respectively. This electrophilic substitution reaction (with the diazonium salt as the electrophile) produces highly coloured azo compounds. [Pg.114]

Synthesis via coupling aromatic diazonium salts with carbon nucleophilic 4 atom fragments... [Pg.23]

Diazonium salts also participate in another type of aromatic substitution, azo coupling, where the two nitrogen atoms are retained in the product. They can act as electrophiles toward activated aromatic compounds, which are generally substituted at the / electron rich—bearing OR, NRj,... [Pg.556]

Primary aromatic amines (e.g., aniline) and secondary aliphatic-aromatic amines (e. g., 7V-methylaniline) usually form triazenes in coupling reactions with benzenedi-azonium salts. If the nucleophilicity of the aryl residue is increased by addition of substituents or fused rings, as in 3-methylaniline and 1- and 2-naphthylamine, aminoazo formation takes place (C-coupling). However, the possibility has also been noted that in aminoazo formation the initial attack of the diazonium ion may still be at the amine N-atom, but the aN-complex might rearrange too rapidly to allow its identification (Beranek and Vecera, 1970). [Pg.395]

This diazotization reaction is compatible with the presence of a wide variety of substituents on the benzene ring. Arenediazonium salts are extremely important in synthetic chemistry, because the diazonio group (N=N) can be replaced by a nucleophile in a radical substitution reaction, e.g. preparation of phenol, chlorobenzene and bromobenzene. Under proper conditions, arenediazonium salts react with certain aromatic compounds to yield products of the general formula Ar-N=N-Ar, called azo compounds. In this coupling reaction, the nitrogen of the diazonium group is retained in the product. [Pg.139]


See other pages where Diazonium salts, coupling nucleophilic aromatic is mentioned: [Pg.426]    [Pg.121]    [Pg.472]    [Pg.269]    [Pg.269]    [Pg.214]    [Pg.324]    [Pg.269]    [Pg.853]    [Pg.426]    [Pg.191]    [Pg.121]   


SEARCH



Aromatic coupling

Aromatic coupling diazonium salt

Aromatic diazonium salt

Aromatic nucleophiles

Diazonium aromatic

Diazonium coupling

Diazonium salts

Nucleophilic aromatic

Nucleophilic coupling

Salt Coupling

Synthesis via coupling aromatic diazonium salts with carbon nucleophilic 4 atom fragments

© 2024 chempedia.info