Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereomeric complexes stability

Mixing of an appropriate chiral selector with adsorbent, for example, silica gel during chromatographic plate impregnation, results in the formation of two diastereomers L-amino acid-chiral selector and D-amino acid-chiral selector molecules. It is known that two enantiomers have the same physicochemical properties in achiral environment but not diastereomers. Two diastereomers of given amino acids have different properties (solubility, diastereomeric complex stability, etc.), so can be separated on achiral, conventional phases. [Pg.311]

Thus, the enantiomeric contents in a pair of sulphoxides can be determined by the NMR chemical shifts in the methine or methylene protons in the two diastereomeric complexes which are stabilized by the hydrogen bond between the hydroxyl and the sulphinyl groups147-151 (Scheme 13). Similarly, the enantiomeric purity and absolute configurations of chiral sulphinate ester can be determined by measuring the H NMR shifts in the presence of the optically active alcohols152. [Pg.564]

The last several years have seen an enormous growth in the number and use of chiral stationary phases in liquid chromatography [742,780-791]. Some problems with the gas chromatographic approach are that the analyte must be volatile to be analyzed and larger-scale preparative separations are frequently difficult. For entropic reasons relatively high temperatures tend to minimize the stability differences between the diastereomeric complexes and racemization of the stationary phase over time may also occur. The upper temperature limit for phases such as Chirasil-Val is about 230 C and is established by the rate of racemization of the chiral centers and not by column bleed. Liquid chromatography should be s ior in the above... [Pg.459]

The resolution of enantiomers by liquid chromatography using chiral stationary phases is based on the formation of reversible diastereomeric complexes of different stability between the sample and stationary phase. Since the formation of the complexes is strongly dependent on the structure of the sample, there are no universal chiral stationary phases. The specific advantages of TLC for enantiomeric separations result from its low cost, convenience and speed (10,97,98). The main limitation, particularly with respect to column liquid chromatography, is the small number of phases currently available. [Pg.857]

The most widely used approach for the separation of enantiomers by TLC is based on a ligand exchange mechanism using commercially available reversed-phase plates impregnated with a solution of copper acetate and (2S,4R,2 RS)-4-hydroxy-l-(2-hydroxydodecyl)proline in optimized amounts. Figure 7.9 (10,97,98,107-109). Enantiomers are separated based on the differences in the stability of the diastereomeric complexes formed between the sample, copper, and the proline selector. As a consequence, a prime requirement for separation is that the seumple must be able to form complexes with copper. Such compounds include... [Pg.858]

Chiral bis-(binaphthophosphole) (bis(BNP)) ligands have been used in the asymmetric hydroformylation of styrene. In solution, the free diphospholes display fluxional behavior. Consistent with their structure, the reaction of the bis(BNP) compounds with platinum(II) derivatives gives either cis chelate mononuclear complexes or trans phosphorus-bridged polynuclear derivatives. Coordination to platinum enhances the conformational stability of bis(BNP)s and diastereomeric complexes can be detected in solution. In the presence of SnCl2, the platinum complexes give rise to catalysts that exhibit remarkable activity in the hydroformylation of styrene. Under optimum conditions, reaction takes place with high branched selectivity (80-85%) and moderate enantio-selectivity (up to 45% ee). [Pg.171]

The influence of the counterion on the stability of crown-ether complexes in general was reviewed in detail in one of the preceding sections. There it was shown to be an important parameter. The nature of the counterion in diastereomeric complexes of chiral crown ethers with primary ammonium salts also influences the chiral recognition. First of all it greatly determines whether salt can be extracted into the organic phase where the chiral discrimination takes place. In a series of experiments (Kyba et al., 1978) it was shown that when S,S -6zs(dinaphthyl)-22-crown-6 [284] in chloroform was equilibrated with racemic er-phenylethylammonium salts the type of anion also influences the degree of enantiomeric differentiation (Table 70). The highest... [Pg.399]

The rates of reaction of both enantiomers of amino-acid esters in the presence of (S)-[324] are the same, but with (S)-[323] they are in most cases different. The reactions of L-amino acid esters in the presence of (S)-[323] are faster than those in the presence of (R)-[323] by factors of 9.2 (R = i-Pr), 8.2 (R = C6H5CH2) and 6.0 (R = i-Bu). No difference in rates is observed for L-alanine p-nitrophenyl ester. The results were explained in terms of the formation of diastereomeric tetrahedral intermediates [325] and [326]. The bulk of the group R will determine how much the complex stability of the (D)-complex decreases relative to that of the (L)-complex, which difference is reflected in the activation energy of the rate-determining step. [Pg.413]

In most cases, the chiral selector is simply added to the BGE. " Interactions between the analytes and the chiral selector will determine the stability of the diastereomeric complexes formed. The interactions involved in the chiral recognition process in CE are hydrophobic, electrostatic, Van der Waals and hydrogen bond-type interactions. Several reviews discuss the principles of electrophoretic chiral separations. [Pg.457]

Most chiral chromatographic separations are accomplished using chromatographic stationary phases that incorporate a chiral selector. The chiral separation mechanisms are generally thought to involve the formation of transient diastereomeric complexes between the enantiomers and the stationary phase chiral ligand. Differences in the stabilities of these complexes account for the differences in the retention observed for the two enantiomers. Often, the use of a... [Pg.61]

If the substrate contains two identical substituents at one terminus of the allylic position such as shown in Scheme 8E.26, the it-allyl intermediate can undergo enantioface exchange via the formation of a a-palladium species at that terminus. This process should occur faster than the nucleophilic addition, which is the enantio-determining step (fc, > 2[Nu ] and 2[Nu ]). Thus, enantioselection can be derived from the relative rate of the nucleophilic addition to each diastereomer the relative stabilities of the two diastereomeric complexes need not have a direct effect on the enantioselectivity (Curtin-Hammett conditions). Although the achiral allylic isomer 120 is expected to follow the same kinetic pathway as the racemic substrate 119, the difference between the results from the two systems often gives an indication as to the origin of enantioselection—complexation or ionization versus nucleophilic addition. [Pg.622]

A kinetic resolution is a chemical reaction in which one enantiomer of a racemate reacts faster than the other. Most kinetic resolutions of pharmaceutical compounds are catalyzed processes. Catalysts used in a kinetic resolution must be chiral. Binding of a chiral catalyst with a racemic material can form two different diastereomeric complexes. Since the complexes are diastereomers, they have different properties different rates of formation, stabilities, and rates of reaction. The products form from the diastereomeric substrate-catalyst complexes at different rates. Therefore, a chiral catalyst is theoretically able to separate enantiomers by reacting with one enantiomer faster than the other. The catalysts used in kinetic resolutions are often enzymes. Enzymes are constructed from chiral amino acids and often differentiate between enantiomeric substrates. [Pg.332]

Enantioselective metal chelation is a technique that has been applied to the separation of amino acid enantiomers. In the method, a transition metal-amino acid complex, such as copper(II)-aspartame, in which the full coordination of the complex has not been reached, is added to the buffer. The amino acid enantiomers are able to form ternary diastereomeric complexes with the metal-amino acid additive if there are differences in stability between the two complexes, enantioselective recognition can be achieved. [Pg.173]

The relative stability of diastereomeric complexes between some chiral selectors ref = (5)-(+)-3 - hydrox y-tetrah ydrofu ran or methyl-(7 )-(+)-2-chloro-propionate, and the conjugate bases and (Mss-H), respectively) and acids... [Pg.204]

Cyclodextrins (CDs) are chiral compounds which interact with enantiomers via diastereomeric interactions. The separation is achieved because of the difference in stabilities of the resulting diastereomeric complexes formed between each enantiomer and the CD. In the first CEC experiments incorporating CDs, di-methylpolysiloxane containing chemically bonded permethylated (3- or y-CD (Chirasil-DEX) was chemically bonded to the inner walls of fused silica capillaries [139,140]. Electoosmotic flow is generated in these capillaries in the same manner as in fused silica capillaries. The Chirasil-DEX does not mask all the silanol groups, so while EOF is decreased, it is not entirely diminished by the coating. Since that time, CDs or CD derivatives have been bonded to silica particles which were then packed into capillaries, and the CD has been incorporated into continuous polymer beds known as monoliths. Table 3 shows some different CSPs, enantiomers separated, resolution, and the number of theoretical plates per meter. [Pg.400]

Chiral separations generally rely on the formation of transient diastereomeric complexes with differing stabilities. Complexes are defined as two or more compounds bound to one another in a definite structural relationship by forces such as hydrogen bonding, ion pairing, metal-ion-to-ligand attraction, n-acid/ n-base interactions, van der Waals attractions, and entropic component desolvation. In the following sections, the most important types of molecular interactions in chiral separations are discussed. [Pg.995]

Type IV includes chiral phases that usually interact with the enantiomeric analytes through the formation of metal complexes. There are usually used to separate amino acid enantiomers. These types of phases are also called ligand exchange phases. The transient diastereomeric complexes are ternary metal complexes between a transitional metal (usually Cu +), an amino acid enantiomeric analyte, and another compound immobilized on the CSP which is able to undergo complexation with the transitional metal (see also the ligand exchange section. Section 22.5). The two enantiomers are separated based on the difference in the stability constant of the two diastereomeric species. The mobile phases used to separate such enantiomeric analytes are usually aqueous solutions of copper (II) salts such as copper sulfate or copper acetate. To modulate the retention, several parameters—such as the pH of the mobile phase, the concentration of the copper ion, or the addition of an organic modifier such as acetonitrile or methanol in the mobile phase—can be varied. [Pg.1039]

Under equilibrium conditions between the activated catalyst and the parent catalyst (Fig. 7-11 a), the ratio of the activated diastereomeric catalysts depends on their thermodynamic stability. (2) Under non-equilibrium conditions, the ratio reflects the relative rate of the reaction of the enantiomeric catalyst with the chiral activator (Fig. 7-11 b). Of course, the use of 1.0 equivalent of the activator per the parent catalyst falls into a 1 1 mixture of the diastereomeric complexes. The kinetic or thermodynamic features described above are more apparent under the treatment with less than 1.0 equivalent of the activator. [Pg.206]

In chiral mobile phase additive mode enantiomer separation, a combination of an achiral stationary and a chiral mobile phase is employed, the latter being created by simply adding a certain amount of an appropriate SO to the eluent. On introduction of a mixture of enantiomers into this system, the individual enantiomers form diastereomeric complexes with the chiral mobile phase additive (CMPA). These transitory diastereomeric complexes may exhibit distinct association/disso-ciation rates, thermodynamic stabilities and physicochemical properties, and therefore may be separated on an appropriate achiral stationary phase. [Pg.196]


See other pages where Diastereomeric complexes stability is mentioned: [Pg.463]    [Pg.387]    [Pg.402]    [Pg.403]    [Pg.405]    [Pg.204]    [Pg.218]    [Pg.267]    [Pg.65]    [Pg.159]    [Pg.24]    [Pg.245]    [Pg.633]    [Pg.216]    [Pg.24]    [Pg.224]    [Pg.62]    [Pg.63]    [Pg.69]    [Pg.32]    [Pg.73]    [Pg.218]    [Pg.355]    [Pg.62]    [Pg.63]    [Pg.69]    [Pg.1340]    [Pg.528]    [Pg.142]   
See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Complex Stabilization

Complexation stabilization

Diastereomeric

Diastereomeric complexes

Stability complexes

© 2024 chempedia.info