Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic properties difference

Both indices can be extended to any other atomic property different from atomic mass, such as -+ atomic polarizability, atomic - van der Waals volume, etc. [Pg.412]

The temperature factor (together with the Cartesian coordinates) is the result of the rcfincincnt procedure as specified by the REMARK 3 record. High values of the temperature factor suggest cither disorder (the corresponding atom occupied different positions in different molecules in the crystal) or thermal motion (vibration). Many visualisation programs (e.g., RasMol [134] and Chime [155]) have a special color scheme designated to show this property. [Pg.118]

For any molecule, additivity of atomic properties requires as many variables as there are different atom types contained in the molecule. For example, for acetic add, C2H+O2, three different atomic increments are needed, one each for a carbon, a hydrogen, and an oxygen atom. [Pg.321]

The next step towards increasing the accuracy in estimating molecular properties is to use different contributions for atoms in different hybridi2ation states. This simple extension is sufficient to reproduce mean molecular polarizabilities to within 1-3 % of the experimental value. The estimation of mean molecular polarizabilities from atomic refractions has a long history, dating back to around 1911 [7], Miller and Sav-chik were the first to propose a method that considered atom hybridization in which each atom is characterized by its state of atomic hybridization [8]. They derived a formula for calculating these contributions on the basis of a theoretical interpretation of variational perturbation results and on the basis of molecular orbital theory. [Pg.322]

Figure 8-11. iD structure and representation offcoccia) versus u for (fi)-4 and [S)-4 at two different conformations (a and b) sampled at 50 evenly separated values between -0,100 e A and i-0.100 e A. Partial atomic charge was used as the atomic property. [Pg.425]

By including characteristic atomic properties, A. of atoms i andj, the RDF code can be used in different tasks to fit the requirements of the information to be represented. The exponential term contains the distance r j between the atoms i andj and the smoothing parameter fl, which defines the probability distribution of the individual distances. The function g(r) was calculated at a number of discrete points with defined intervals. [Pg.502]

Atoms combine with one another to give compounds having properties different from the atoms they contain The attractive force between atoms m a compound is a chemical bond One type of chemical bond called an ionic bond, is the force of attraction between oppositely charged species (ions) (Figure 1 4) Ions that are positively charged are referred to as cations, those that are negatively charged are anions... [Pg.10]

Bond Properties. Bond strengths, bond lengths, and atom electronegativity differences of various phosphoms—atom linkages are given in... [Pg.359]

Catalysis by Metals. Metals are among the most important and widely used industrial catalysts (69,70). They offer activities for a wide variety of reactions (Table 1). Atoms at the surfaces of bulk metals have reactivities and catalytic properties different from those of metals in metal complexes because they have different ligand surroundings. The surrounding bulk stabilizes surface metal atoms in a coordinatively unsaturated state that allows bonding of reactants. Thus metal surfaces offer an advantage over metal complexes, in which there is only restricted stabilization of coordinative... [Pg.175]

Chemicals are composed of atoms, discrete particles of matter incapable of further subdivision in the course of a chemical reaction. They are the smallest units of an element. Atoms of the same element are identical and equal in weight. All specimens of gold have the same melting point, the same density, and the same resistance to attack by mineral acids. Similarly, all samples of iron of the same history will have the same magnetism. Atoms of different elements have different properties and differ in weight. [Pg.21]

As in the alkanes, it is possible for carbon atoms to align themselves in different orders to form isomers. Not only is it possible for the carbon atoms to form branches which produce isomers, but it is also possible for the double bond to be situated between different carbon atoms in different compounds. This different position of the double bond also results in different structural formulas, which, of course, are isomers. Just as in the alkanes, isomers of the alkenes have different properties. The unsaturated hydrocarbons and their derivatives are more active chemically than the saturated hydrocarbons and their derivatives. [Pg.188]

The properties of a hetaryne in which the C = C bond is adjacent to the hetero atom may differ considerably from those of its isomer(s). [Pg.125]

An element is composed of tiny particles called atoms. All atoms of a given element show the same chemical properties. Atoms of different elements show different properties. [Pg.26]

The elements in a compound are not just mixed together. Their atoms are actually joined, or bonded, to one another in a specific way due to a chemical change (see Section A). The result is a substance with chemical and physical properties different from those of the elements that form it. For example, when sulfur is ignited in air, it combines with oxygen from the air to form the compound sulfur dioxide. Solid yellow sulfur and odorless oxygen gas produce a colorless, pungent, and poisonous gas (Fig. C.l). [Pg.47]

Because the ratios of atoms of different elements are so important in chemistry, we need to know how to determine the numbers of the different types of atoms, ions, or molecules present in a sample. Knowing the types of atoms is fundamental to qualitative chemistry—understanding the properties of substances, for instance. Knowing the numbers of atoms is fundamental to quantitative chemistry—the calculation of the values of these properties. [Pg.62]

Some of the atomic properties of manganese differ markedly from its neighbors. For example, at constant pressure it takes 400 kj (2 sf) to atomize 1.0 mol Cr(s) and 420 kj to atomize 1.0 mol Fe(s), but only 280 kj to atomize 1.0 mol Mn(s). Propose an explanation, using the electron configurations of the gaseous atoms, for the lower enthalpy of atomization of manganese. [Pg.813]

Several structural features, including electron transfer between atoms of different electronegativity, oxygen deficiency, and unsynchronized resonance of valence bonds, as well as tight binding of atoms and the presence of both hypoelectronic and hyperelectronic elements, cooperate to confer metallic properties and high-temperature superconductivity on compounds such as (Sr.Ba.Y.LahCuO,-,. [Pg.832]

The similarity of the results obtained for finite elusters and the infinite slab allows to eonclude in favour of the validity of the eluster model of adequate size (6 or 8 molybdenum atoms). In addition to the chemisorption of organic molecules on solid surfaces which is generally considered as a localized phenomenon, the interaction between molybdenum oxide and an adsorbate can also be represented by a loeal eomplex formed by a finite eluster and the adsorbed molecule. Indeed, the study of the evolution of the electronic properties as a funetion of the cluster size shows that, for a eluster eontaining 6 or 8 molybdenum atoms, most of the electronic properties converge towards limit values. This eonvergence is sensitive to the direction of the cluster growth. On the other hand, the electronic properties of the (001), (010) and (100) faces are not identieal, the type of surface atoms being different these results allow to predict that the characteristics of the chemisorption step will depend on the particular face on which it takes place. [Pg.438]

There is no doubt that all the special sites listed above might have adsorptive and other properties differing from those of normal surface atoms. For this reason the rate of an electrochemical reaction could be higher or lower at such sites. The sign and magnitude of the overall effect depends on the relative numbers of special points and normal surface atoms. [Pg.533]

The influence of Pt modihcations on the electrochemical and electrocatalytic properties of Ru(OOOl) electrodes has been investigated on structurally well-defined bimetallic PtRu surfaces. Two types of brmetalhc surfaces were considered Ru(OOOl) electrodes covered by monolayer Pt islands and monolayer PtRu/Ru(0001) surface alloys with a highly dispersed and almost random distribution of the respective surface atoms, with different Pt surface contents for both types of structures. The morphology of these surfaces differs significantly from that of brmetaUic PtRu surfaces prepared by electrochemical deposition of Pt on Ru(0001), where Pt predominantly exists in small multilayer islands. The electrochemical and electrocatal5d ic measurements, base CVs, and CO bulk oxidation under continuous electrolyte flow, led to the following conclusions ... [Pg.496]

Isomer shift changes are sufficiently large for Ru atoms in different systems to distinguish between different oxidation states and different bond properties ... [Pg.271]

The behavior of a multi-particle system with a symmetric wave function differs markedly from the behavior of a system with an antisymmetric wave function. Particles with integral spin and therefore symmetric wave functions satisfy Bose-Einstein statistics and are called bosons, while particles with antisymmetric wave functions satisfy Fermi-Dirac statistics and are called fermions. Systems of " He atoms (helium-4) and of He atoms (helium-3) provide an excellent illustration. The " He atom is a boson with spin 0 because the spins of the two protons and the two neutrons in the nucleus and of the two electrons are paired. The He atom is a fermion with spin because the single neutron in the nucleus is unpaired. Because these two atoms obey different statistics, the thermodynamic and other macroscopic properties of liquid helium-4 and liquid helium-3 are dramatically different. [Pg.218]

Molecules, the smallest units of matter that have the properties of a substance, are made up of two or more atoms. The molecules of some chemical elements, such as oxygen and nitrogen, mentioned above, for example, are made up of two identical atoms. The molecules of compounds, that consist of two or more combined elements are made up two or more atoms of different elements bonded together (see Textbox 2). [Pg.46]


See other pages where Atomic properties difference is mentioned: [Pg.50]    [Pg.416]    [Pg.498]    [Pg.266]    [Pg.178]    [Pg.443]    [Pg.220]    [Pg.2]    [Pg.185]    [Pg.255]    [Pg.768]    [Pg.855]    [Pg.371]    [Pg.19]    [Pg.188]    [Pg.688]    [Pg.434]    [Pg.457]    [Pg.423]    [Pg.443]    [Pg.155]    [Pg.176]    [Pg.54]    [Pg.68]    [Pg.344]    [Pg.556]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Atomic property

© 2024 chempedia.info