Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Development of Electrocatalysis

Fuel cell development has always been related to progress in structural materials as well as progress in electrocatalysis, a field that had come into its own as a new field of theoretical and practical electrochemistry during 1970s. Like fuel cells, these fields have seen an alternation of great expectations and disillusionment. [Pg.252]

Starting point for the emergence of electrocatalysis was the discovery that hydrocarbons could be oxidized at low temperatures (this fact had not been a part of the Ostwald scenario). Then it was discovered that synergistic effects were operative in the use of ruthenium-platinum catalysts for methanol oxidation, and that compounds such as platinum-free metalloporphyrins were useful catalysts for certain electrochemical reactions in fuel cells. Hopes were expressed that in the future expensive platinum catalyst could be replaced. Again, in the attempts of commercial realization of these discoveries considerable difficulties were encountered, which led to a period of disenchantment and pessimism in 1970s and 1980s. It had been demonstrated beyond doubt that, fundamentally, hydrocarbons could be oxidized at low temperatures, but practical rates that could be achieved were unrealistically low. It had also been demonstrated that fuel cells could be made to work without [Pg.252]


When surveying the central milestones in the development of electrocatalysis for low temperature fuel cells operating in acidic environments, the following, listed in chronological order, seem to be the most outstanding ... [Pg.3]

The electrode surface serves the role of a catalyst for the charge transfer process and often also for coupled preceding or following chemical processes. Unfortunately, electrocatalytic processes for the most part are not well understood. Of critical importance is the structure of the electrochemical interface, particularly with adsorption of various species. The limited structural information concerning such interfaces is a serious deterrent of the development of electrocatalysis as a precise science (see the later section in this chapter on "Surface Reactions"). [Pg.127]

At present, most researchers hold more realistic views of the promise and difficulties in the development of fuel cells, as well as in the development of electrocatalysis. We have concluded in Section 24.5 that an important near-term application is in portable power supply. This is a realistic expectation. It is based on need and on available solutions. [Pg.253]

Electrodes. At least three factors need to be considered ia electrode selection as the technical development of an electroorganic reaction moves from the laboratory cell to the commercial system. First is the selection of the lowest cost form of the conductive material that both produces the desired electrode reactions and possesses stmctural iategrity. Second is the preservation of the active life of the electrodes. The final factor is the conductivity of the electrode material within the context of cell design. An ia-depth discussion of electrode materials for electroorganic synthesis as well as a detailed discussion of the influence of electrode materials on reaction path (electrocatalysis) are available (25,26). A general account of electrodes for iadustrial processes is also available (27). [Pg.86]

The aim of this overview is first to present the general principles of electrocatalysis by metal complexes, followed by a series of selected examples published over the last 20 years illustrating the major electrochemical reactions catalyzed by metal complexes and their potential applications in synthetic and biomimetic processes, and also in the development of sensory devices. The area of metal complex catalysts in electrochemical reactions was reviewed in 1990.1... [Pg.472]

Figure 6.7 illustrates the voltammetric response of the third-generation SOD-based 02 biosensors with Cu, Zn-SOD confined onto cystein-modified Au electrode as an example. The presence of 02" in solution essentially increases both the cathodic and anodic peak currents of the SOD compared with its absence [150], Such a redox response was not observed at the bare Au or cysteine-modified Au electrodes in the presence of 02". The observed increase in the anodic and cathodic current response of the Cu, Zn-SOD/cysteine-modified Au electrode in the presence of 02 can be considered to result from the oxidation and reduction of 02, respectively, which are effectively mediated by the SOD confined on the electrode as shown in Scheme 3. Such a bi-directional electromediation (electrocatalysis) by the SOD/cysteine-modified Au electrode is essentially based on the inherent specificity of SOD for the dismutation of 02", i.e. SOD catalyzes both the reduction of 02 to H202 and the oxidation to 02 via a redox cycle of its Cu (II/I) complex moiety as well as the direct electron transfer of SOD realized at the cysteine-modified Au electrode. Thus, this coupling between the electrode and enzyme reactions of SOD could facilitate the development of the third-generation biosensor for 02". ... Figure 6.7 illustrates the voltammetric response of the third-generation SOD-based 02 biosensors with Cu, Zn-SOD confined onto cystein-modified Au electrode as an example. The presence of 02" in solution essentially increases both the cathodic and anodic peak currents of the SOD compared with its absence [150], Such a redox response was not observed at the bare Au or cysteine-modified Au electrodes in the presence of 02". The observed increase in the anodic and cathodic current response of the Cu, Zn-SOD/cysteine-modified Au electrode in the presence of 02 can be considered to result from the oxidation and reduction of 02, respectively, which are effectively mediated by the SOD confined on the electrode as shown in Scheme 3. Such a bi-directional electromediation (electrocatalysis) by the SOD/cysteine-modified Au electrode is essentially based on the inherent specificity of SOD for the dismutation of 02", i.e. SOD catalyzes both the reduction of 02 to H202 and the oxidation to 02 via a redox cycle of its Cu (II/I) complex moiety as well as the direct electron transfer of SOD realized at the cysteine-modified Au electrode. Thus, this coupling between the electrode and enzyme reactions of SOD could facilitate the development of the third-generation biosensor for 02". ...
DMFCs and direct ethanol fuel cells (DEFCs) are based on the proton exchange membrane fuel cell (PEM FC), where hydrogen is replaced by the alcohol, so that both the principles of the PEMFC and the direct alcohol fuel cell (DAFC), in which the alcohol reacts directly at the fuel cell anode without any reforming process, will be discussed in this chapter. Then, because of the low operating temperatures of these fuel cells working in an acidic environment (due to the protonic membrane), the activation of the alcohol oxidation by convenient catalysts (usually containing platinum) is still a severe problem, which will be discussed in the context of electrocatalysis. One way to overcome this problem is to use an alkaline membrane (conducting, e.g., by the hydroxyl anion, OH ), in which medium the kinetics of the electrochemical reactions involved are faster than in an acidic medium, and then to develop the solid alkaline membrane fuel cell (SAMFC). [Pg.5]

This may be explained by the bifunctional theory of electrocatalysis developed by Watanabe and Motoo [14], according to which Pt activates the dissociative chemisorption of methanol to CO, whereas Ru activates and dissociates water molecules, leading to adsorbed hydroxyl species, OH. A surface oxidation reaction between adsorbed CO and adsorbed OH becomes the rate-determining step. The reaction mechanism can be written as follows [15] ... [Pg.13]

The targets of electrocatalysis are at the basis of recent developments in the field of water electrolysis. First, it is necessary to distinguish between materials evaluation and materials selection. The former is the search for materials with better and better properties for the wanted electrode process. The latter implies global considerations of applicability. This is probably what makes academic research differ from R D. The former is favored by scientifically exciting performance, in the latter it is necessary to find a compromise between, for instance, activity and stability or between efficiency and economic convenience. [Pg.245]

The theory of electrocatalysis is still in its infancy. It was developed first for the hydrogen evolution reaction in the second half of the 1900s. The grounds can be traced back in a seminal paper by Floriuti and Polanyi [25]. Accordingly, for a simple one-electron electrode reaction ... [Pg.246]

A complete theory of electrocatalysis leading to volcano curves has been developed only for the process of hydrogen evolution and can be found in a seminal paper by Parsons in 1958 [26]. The approach has shown that a volcano curve results irrespective of the nature of the rate-determining step, although the slope of the branches of the volcano may depend on the details of the reaction mechanism. [Pg.247]

The development of a consistent theory for a dissociative electron transfer is a recent challenge in the field of theoretical electrocatalysis. Progress in this field of electrochemistry has involved the use of an harmonic Morse curves [25] instead of harmonic approximations. Applying the principles of the theory of the activated complex to adiabatic dissociative electron transfer reactions, the work of Saveant resulted in the following expressions [24] for the Gibbs energy of activation... [Pg.411]

Two years ago, Advances in Catalysis featured a chapter on chemisorbed intermediates in electrocatalysis. In this issue we follow up with a chapter by Wendt, Rausch, and Borucinski, Advances in Applied Electrocatalysis. The successful commercial application of electrocatalysis requires a detailed, fundamental knowledge of the many catalytic phenomena such as adsorption, diffusion, and superimposition of catalyst micro- and nanostructure on the special requirements of electrode behavior. Considerable understanding of the status and limitations of electrolysis, fuel cells, and electro-organic syntheses has been obtained and provides a sound basis for future developments. [Pg.294]

Only two general reviews [38, 39] entirely devoted to the hydrogen evolution reaction have appeared after the start of the development of cathode activation [40]. In several other cases, hydrogen evolution has been discussed within the general frame of electrocatalysis [4, 41-47] or kinetics of electrode reactions [48, 49]. However, only one of the two reviews mentioned above discusses electrocatalytic aspects with literature coverage up to the late 70 s, when the field of cathode activation was at the beginning of its development. [Pg.4]

Hydrogen evolution is the only reaction for which a complete theory of electrocatalysis has been developed [33]. The reason is that the reaction proceeds through a limited number of steps with possibly only one type of intermediate. The theory predicts that the electrocatalytic activity depends on the heat of adsorption of the intermediate on the electrode surface in a way giving rise to the well known volcano curve. The prediction has been verified experimentally [54] (Fig. 2) and the volcano curve remains the main predictive basis on which the catalytic activity is discussed [41, 55],... [Pg.6]

One of the most fruitful trends in the comprehension and control of electrochemical reaction kinetics and electrocatalysis has been the development of modified electrodes to achieve redox mediators of solution processes. This strategy is based on the electrochemical activation (through the application of an electrical perturbation to the electrode) of different sites at a modified surface. As a result of this activation, the oxidation or the reduction of other species located in the solution adjacent to the electrode surface (which does not occur or occurs very slowly in the absence of the immobilized catalyst) can take place4 [40, 69, 70]. [Pg.448]

Joaquin Gonzalez is a Lecturer at the University of Murcia, Spain. He follows studies of Chemistry at this University and got his Ph.D. in 1997. He has been part of the Theoretical and Applied Electrochemistry group directed by Professor Molina since 1994. He is author of more than 80 research papers. Between 1997 and 1999, he also collaborated with Prof. Ms Luisa Abrantes of the University of Lisboa. He is the coauthor of four chapters, including Ultramicroelectrodes in Characterization of Materials second Ed (Kaufmann, Ed). He has taught in undergraduate and specialist postgraduate courses and has supervised three Ph.D. theses. His working areas are physical electrochemistry, the development of new electrochemical techniques, and the modelization, analytical treatment, and study of electrode processes at the solution and at the electrode surface (especially those related to electrocatalysis). [Pg.662]


See other pages where Development of Electrocatalysis is mentioned: [Pg.252]    [Pg.252]    [Pg.586]    [Pg.309]    [Pg.522]    [Pg.2]    [Pg.7]    [Pg.253]    [Pg.265]    [Pg.508]    [Pg.552]    [Pg.596]    [Pg.600]    [Pg.629]    [Pg.704]    [Pg.264]    [Pg.257]    [Pg.409]    [Pg.307]    [Pg.307]    [Pg.366]    [Pg.357]    [Pg.25]    [Pg.89]    [Pg.515]    [Pg.358]    [Pg.214]    [Pg.625]    [Pg.88]    [Pg.198]    [Pg.271]    [Pg.272]   


SEARCH



Electrocatalysis

© 2024 chempedia.info