Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Defects lateral

Carbaryl is perhaps one of the best studied of the major lawn chemicals, and evidence of health-related risks related to its use date as early as the late 1960s, when studies of the chemical revealed both its toxicity and its potential impact on animal (and potentially human) reproduction. In 1969 the U.S. Department of Health Education and Welfare recommended restrictions on the use of the chemical, owing to mounting evidence that it may be tetragenic (causing birth defects). Later research in the 1980s pointed towards the possible implication of carbaryl in neurotoxicity, brain function, and aggressive behavior. ... [Pg.62]

Performance information for the incumbent resin was missing from the early parts of the decision-making process. The decision that the technical problem was the performance of the new resin was based on anecdotal information from plant personnel on the performance of the incumbent resin. That is, the plant personnel believed that the reject level for parts made from the incumbent resin was less than 5 %. A statistical analysis of the part defect rates was not performed. This lack of information early in the process allowed the plant manager to propose a poor technical solution without understanding the root cause for the defect. Later in the troubleshooting process, a statistical analysis of the defect rate indicated that the incumbent resin had a defect rate that was statistically equivalent to the new resin. [Pg.413]

We have mentioned but a few types of defects to illustrate the principles of notation. Many other defects can be described in the same way we will see more defects later on. [Pg.24]

Homogeneity of data. Homogeneous data will be uniform in structure and composition, usually possible to describe with a fixed number of parameters. Homogeneous data is encountered in simple NDT inspection, e.g. quality control in production. Inhomogeneous data will contain various combinations of indications from construction elements, defects and noise sources. An example of inhomogenous data are ultrasonic B-scan images as described in [Hopgood, 1993] or as encountered in the ultrasonic rail-inspection system described later in this paper. [Pg.98]

Manual ultrasonic testing offers the advantages of low equipment cost combined with the flexibility of the human operator to provide good access and complex scanning capability. However, a total reliance on the capabilities of the ultrasonic technician to visualise the physical situation leads to a number of drawbacks, including lack of accuracy and consistency of defect size and location measurements, lack of verification that the required scan coverage has been fully achieved, and lack of consistency in flaw classification. A further disadvantage is that the ultrasonic data is not permanently recorded there is therefore no opportunity for the data to be re-examined at a later date if required. [Pg.765]

Fig.7 shows the relation between the echo height F/B and the defect area s ratio Sr/So, when the ultrasonic wave is input from FCD500 side. This Sr/So is the ratio of the defect area Sr to the beam irradiational area So. Moreover, // X of (a) (b) (c) (d) are the value at the position where the echo height F/B is changed in Fig.5. And, the defect position of (i) (iv) in figure is shown the each position of Fig.3 respectively. Moreover, each curves are calculation values respectively, and this is described later. There has two case that F/T) of (a) (d) is changed by the defect position. The first case, F/B are increased as defect area s ratio Sr/So increases. The second case, F/B are increased after decrases as Sr/So increases. And defect area s ratio Sr/So to which F/B decreases is different according to the defect position... Fig.7 shows the relation between the echo height F/B and the defect area s ratio Sr/So, when the ultrasonic wave is input from FCD500 side. This Sr/So is the ratio of the defect area Sr to the beam irradiational area So. Moreover, // X of (a) (b) (c) (d) are the value at the position where the echo height F/B is changed in Fig.5. And, the defect position of (i) (iv) in figure is shown the each position of Fig.3 respectively. Moreover, each curves are calculation values respectively, and this is described later. There has two case that F/T) of (a) (d) is changed by the defect position. The first case, F/B are increased as defect area s ratio Sr/So increases. The second case, F/B are increased after decrases as Sr/So increases. And defect area s ratio Sr/So to which F/B decreases is different according to the defect position...
Brunauer (see Refs. 136-138) defended these defects as deliberate approximations needed to obtain a practical two-constant equation. The assumption of a constant heat of adsorption in the first layer represents a balance between the effects of surface heterogeneity and of lateral interaction, and the assumption of a constant instead of a decreasing heat of adsorption for the succeeding layers balances the overestimate of the entropy of adsorption. These comments do help to explain why the model works as well as it does. However, since these approximations are inherent in the treatment, one can see why the BET model does not lend itself readily to any detailed insight into the real physical nature of multilayers. In summary, the BET equation will undoubtedly maintain its usefulness in surface area determinations, and it does provide some physical information about the nature of the adsorbed film, but only at the level of approximation inherent in the model. Mainly, the c value provides an estimate of the first layer heat of adsorption, averaged over the region of fit. [Pg.653]

Adechanical stahility. ChemisoriDtion to tire surface, intennolecular interactions and crosslinking between adjacent compounds—if possible—all contribute to tire resulting stability of tire monolayer film. Lateral force microscopy investigations revealed tliat tire mechanical stability towards lateral forces on tire nanometre scale is likely to be detennined by tire defect density and tire domain size on a nano- to micrometre scale [163, 1731. [Pg.2627]

MgCl2-Supported Catalysts. Examination of polymerizations with TiCl catalysts has estabUshed that only a small percentage of titanium located on lateral faces, edges, and along crystal defects is active (52) (see Titanium and titanium alloys). This led to the recognition that much of the catalyst mass acted only as a support, promoting considerable activity aimed at finding a support for active titanium that would not be detrimental to polymer properties. [Pg.410]

The physical properties of tellurium are generally anistropic. This is so for compressibility, thermal expansion, reflectivity, infrared absorption, and electronic transport. Owing to its weak lateral atomic bonds, crystal imperfections readily occur in single crystals as dislocations and point defects. [Pg.384]

In strong sunlight, water can evaporate at defects in coatings and surface films, and lead to concentration and crystallization of salts (e.g., in the upper decks of the ship). This can damage surface films, giving rise to local anodes. This is the case when a ship slowly rises in the water on unloading and is later reimmersed on loading. [Pg.394]

The relationship is commonly known as the TOx rule and is shown in Figure 1.13. The 10 X rule demonstrates how a fault, if not discovered, will give rise to ten times the original elimination costs in a later phase of the life-cycle. In other words, products must be designed in such a way that scarcely any defects develop or if they do, they can be identified as early as possible in the product development process and rectified (Braunsperger, 1996). Other surveys have found that these costs could be even higher as shown in Figure 1.14. [Pg.15]

Sickle-cell anemia is the classic example of an inherited disease that is caused by a change in a protein s amino acid sequence. Linus Pauling proposed in 1949 that it was caused by a defect in the hemoglobin molecule he thus coined the term molecular disease. Seven years later Vernon Ingram showed that the disease was caused by a single mutation, a change in residue 6 of the P chain of hemoglobin from Glu to Val. [Pg.43]

The im< e mode produces an image of the illuminated sample area, as in Figure 2. The imj e can contain contrast brought about by several mechanisms mass contrast, due to spatial separations between distinct atomic constituents thickness contrast, due to nonuniformity in sample thickness diffraction contrast, which in the case of crystalline materials results from scattering of the incident electron wave by structural defects and phase contrast (see discussion later in this article). Alternating between imj e and diffraction mode on a TEM involves nothing more than the flick of a switch. The reasons for this simplicity are buried in the intricate electron optics technology that makes the practice of TEM possible. [Pg.105]

One of the papers published in the first issue of JCP, by F.G. Foote and E.R. Jette, was devoted to the defect structure of FeO and is widely regarded as a classic. Frank Foote (1906-1998), a metallurgist, later became renowned for his contribution to the Manhattan Project and to nuclear metallurgy generally so chemical physics certainly did not exclude metallurgy. [Pg.30]

The key here was the theory. The pioneers familiarity with both the kinematic and the dynamic theory of diffraction and with the real structure of real crystals (the subject-matter of Lai s review cited in Section 4.2.4) enabled them to work out, by degrees, how to get good contrast for dislocations of various kinds and, later, other defects such as stacking-faults. Several other physicists who have since become well known, such as A. Kelly and J. Menter, were also involved Hirsch goes to considerable pains in his 1986 paper to attribute credit to all those who played a major part. [Pg.220]

Given the advanced state of wave-profile detectors, it seems safe to recognize that the descriptions given by such an apparatus provide a necessary, but overly restricted, picture. As is described in later chapters of this book, shock-compressed matter displays a far more complex face when probed with electrical, magnetic, or optical techniques and when chemical changes are considered. It appears that realistic descriptive pictures require probing matter with a full array of modern probes. The recovery experiment in which samples are preserved for post-shock analysis appears critical for the development of a more detailed defective solid scientific description. [Pg.67]


See other pages where Defects lateral is mentioned: [Pg.260]    [Pg.307]    [Pg.421]    [Pg.172]    [Pg.395]    [Pg.10]    [Pg.558]    [Pg.1321]    [Pg.260]    [Pg.307]    [Pg.421]    [Pg.172]    [Pg.395]    [Pg.10]    [Pg.558]    [Pg.1321]    [Pg.301]    [Pg.723]    [Pg.1694]    [Pg.2937]    [Pg.272]    [Pg.430]    [Pg.97]    [Pg.190]    [Pg.1]    [Pg.127]    [Pg.336]    [Pg.476]    [Pg.58]    [Pg.210]    [Pg.98]    [Pg.496]    [Pg.49]    [Pg.105]    [Pg.117]    [Pg.208]    [Pg.375]    [Pg.412]    [Pg.47]    [Pg.78]    [Pg.334]    [Pg.379]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



© 2024 chempedia.info