Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-Cyclopentadiene chloride

Aldrin is obtained from the Diels-Alder addition product of cyclopentadiene and vinyl chloride by dehydrochlorination followed by condensation with hexachlorocyclopenta-diene. [Pg.20]

The allyl-substituted cyclopentadiene 122 was prepared by the reaction of cyclopentadiene anion with allylic acetates[83], Allyl chloride reacts with carbon nucleophiles without Pd catalyst, but sometimes Pd catalyst accelerates the reaction of allylic chlorides and gives higher selectivity. As an example, allylation of the anion of 6,6-dimethylfulvene 123 with allyl chloride proceeded regioselectively at the methyl group, yielding 124[84]. The uncatalyzed reaction was not selective. [Pg.308]

In a novel approach to vitamin K, Hoffmann-La Roche has exploited the potential acidity at C-3 as a means to attach the side chain of vitamin (36). Menadione was reacted with cyclopentadiene to yield the Diels-Alder adduct. The adduct is treated with base and alkylated at C-3 with phytyl chloride. A retro Diels-Alder reaction yields vitamin K. Process improvements in this basic methodology have been claimed by Japanese workers (37). [Pg.153]

Methane, chlorine, and recycled chloromethanes are fed to a tubular reactor at a reactor temperature of 490—530°C to yield all four chlorinated methane derivatives (14). Similarly, chlorination of ethane produces ethyl chloride and higher chlorinated ethanes. The process is employed commercially to produce l,l,l-trichloroethane. l,l,l-Trichloroethane is also produced via chlorination of 1,1-dichloroethane with l,l,2-trichloroethane as a coproduct (15). Hexachlorocyclopentadiene is formed by a complex series of chlorination, cyclization, and dechlorination reactions. First, substitutive chlorination of pentanes is carried out by either photochemical or thermal methods to give a product with 6—7 atoms of chlorine per mole of pentane. The polychloropentane product mixed with excess chlorine is then passed through a porous bed of Fuller s earth or silica at 350—500°C to give hexachlorocyclopentadiene. Cyclopentadiene is another possible feedstock for the production of hexachlorocyclopentadiene. [Pg.508]

Halogenation. Halogens and halogen acids add readily to the unsaturated carbon linkages of the cyclopentadiene molecule. By such additions a series of halogenated derivatives range, in the case of the chloride, from 3-chlotocydopentene to tetrachlorocyclopentane. Of all the possible chloto derivatives of CPD, only hexachlorocyclopentadiene [77-47-4] ever reached commercial status. It was used as an insecticide, but this use has been discontinued because of its toxicity (see Chlorocarbons and chlorohydrocarbons, toxic aromatics). It can be prepared by a Hquid phase chlorination of CPD below 50°C (29). [Pg.431]

Reduction of indolenines with sodium and ethanol gives indolines. The pentachloropyr-role, obtained by chlorination of pyrrole with sulfuryl chloride at room temperature in anhydrous ether, was shown by spectroscopic methods to have an a-pyrrolenine (2H-pyrrole) structure (222). It is necessary, however, to postulate that it is in equilibrium with small but finite amounts of the isomeric /3-pyrrolenine form (3//-pyrrole 223), since pentachloropyrrole functions as a 2-aza- rather than as a 1-aza-butadiene in forming a cycloadduct (224) with styrene (80JOC435). Pentachloropyrrole acts as a dienophile in its reaction with cyclopentadiene via its ene moiety (81JOC3036). [Pg.84]

The methods of preparation of ferrocene have been reviewed by Pauson and by Fischer. Ferrocene has been made by the reaction of ferric chloride with cyclopentadienylmagnesium bromide, by the direct thermal reaction of cyclopentadiene with iron metal, by the direct interaction of cyclopentadiene with iron carbonyl, by the reaction of ferrous chloride with cyclopentadiene in the presence of organic bases such as diethyl-amine, by the reaction of ferrous chloride with sodium cyclo-[lentadienide in liquid ammonia, and from cyclopentadiene and... [Pg.33]

Diels-Alder reactions Neutral ionic liquids have been found to be excellent solvents for the Diels-Alder reaction. The first example of a Diels-Alder reaction in an ionic liquid was the reaction of methyl acrylate with cyclopentadiene in [EtNH3][N03] [40], in which significant rate enhancement was observed. Howarth et al. investigated the role of chiral imidazolium chloride and trifluoroacetate salts (dissolved in dichloromethane) in the Diels-Alder reactions between cyclopentadiene and either crotonaldehyde or methacroline [41]. It should be noted that this paper describes one of the first examples of a chiral cationic ionic liquid being used in synthesis (Scheme 5.1-17). The enantioselectivity was found to be < 5 % in this reaction for both the endo (10 %) and the exo (90 %) isomers. [Pg.182]

Benzothiadiazole 1,1-dioxide can be conveniently assayed and characterized without isolation by forming its adduct with cyclopentadiene.5 The following procedure illustrates characterization, for assay the same procedure can be applied to an aliquot, with all amounts scaled down in proportion. The dried ether extract of 1,2,3-benzothiadiazole 1,1-dioxide prepared from 1.43 g (0.0080 mole) of sodium 2-aminobenzene-sulfinate is concentrated to about 20 ml at 0°, and 20 ml. of acetonitrile at —20° is added. Twenty milliliters of cold, freshly prepared cyclopentadiene6 is added The mixture is kept overnight at —10° to 0°. Solvent and excess cyclopentadiene are removed by evaporation at 0° under reduced pressure to leave 1.20-1.28 g. (64-68% based on sodium 2-aminobenzenesulfinate) of crude 1-1 adduct, mp. 87° (dec.). For purification it is dissolved in 20 ml. of methylene chloride, 70 ml. of ether is added, and the solution is kept at —70°. Adduct decomposing at 90° crystallizes recovery is about 75%. From pure, crystalline 1, 2, 3-benzothiadiazole 1,1-dioxide the yield of adduct is 92-98%. [Pg.8]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

The reaction of chiral sulfones 161, derived from (lS)-( + )-10-camphorsulfonyl chloride, with cyclopentadiene gives predominantly the endo adduct in a diastereomeric ratio of 91 9 from which one diastereomer 162 can be isolated in pure form by recrystallization (equation 115)109. [Pg.798]

Table 4.4 Diels-Alder reactions of (R)-0-acryloylpantolactone (4) with cyclopentadiene (1) in methylene chloride... Table 4.4 Diels-Alder reactions of (R)-0-acryloylpantolactone (4) with cyclopentadiene (1) in methylene chloride...
The Diels-Alder reaction of nonyl acrylate with cyclopentadiene was used to investigate the effect of homochiral surfactant 114 (Figure 4.5) on the enantioselectivity of the reaction [77]. Performing the reaction at room temperature in aqueous medium at pH 3 and in the presence of lithium chloride, a 2.2 1 mixture of endo/exo adducts was obtained with 75% yield. Only 15% of ee was observed, which compares well with the results quoted for Diels-Alder reactions in cyclodextrins [65d]. Only the endo addition was enantioselective and the R enantiomer was prevalent. This is the first reported aqueous chiral micellar catalysis of a Diels-Alder reaction. [Pg.179]

Rideout and Breslow first reported [2a] the kinetic data for the accelerating effect of water, for the Diels Alder reactions of cyclopentadiene with methyl vinyl ketone and acrylonitrile and the cycloaddition of anthracene-9-carbinol with N-ethylmaleimide, giving impetus to research in this area (Table 6.1). The reaction in water is 28 to 740 times faster than in the apolar hydrocarbon isooctane. By adding lithium chloride (salting-out agent) the reaction rate increases 2.5 times further, while the presence of guanidinium chloride decreases it. The authors suggested that this exceptional effect of water is the result of a combination of two factors the polarity of the medium and the... [Pg.252]

Chloroaluminate ionic liquids (typically a mixture of a quaternary ammonium salt with aluminum chloride see Table 6.9) exhibit at room temperature variable Lewis acidity and have been successfully used as solvent/catalyst for Diels-Alder reactions [57]. The composition of chloroaluminate ionic liquids can vary from basic ([FMIM]C1 or [BP]C1 in excess) to acidic (AICI3 in excess) and this fact can be used to affect the reactivity and selectivity of the reaction. The reaction of cyclopentadiene with methyl acrylate is an example (Scheme 6.31). [Pg.280]

Ruthenium complexes have also been reported as active species for enan-tioselective Diels-Alder reactions. Faller et al. prepared a catalyst by treatment of (-)-[( ] -cymene)RuCl(L)]SbF6 with AgSbFe resulting in the formation of a dication by chloride abstraction [95]. The ligand was (-l-)-IndaBOx 69 (Scheme 36) and the corresponding complex allowed the condensation of methacrolein with cyclopentadiene in 95% conversion and 91% ee. As another example, Davies [96] prepared the complex [Ru(Fl20)L ( i -mes)] [SbFe]2 (with 70 as L in Scheme 36), and tested its activity in the same reaction leading to the expected product with similar activity and lower enan-tioselectivity (70%). [Pg.122]

Sulphines may react as dienophiles with 1,3-dienes with the formation of cyclic sulphoxides. Unstable 2,2-dichloro-5,6-dihydro-2ff-thiin-l-oxide 191 was formed in an exothermic reaction between 173aandcyclopentadieneat — 40 (equation 101). The simplest, parent sulphine, CH2 = S = O, prepared in situ by treatment of a-trimethylsilylmethanesulphinyl chloride with cesium fluoride, reacts with cyclopentadiene to give bicyclic, unsaturated sulphoxide 192 as a mixture of two diastereoisomers in a 9 1 ratio (equation 102). On the other hand, a,j8-unsaturated sulphine 193 (generated by thermolysis of 2-benzylidene-l-thiotetralone dimer S-oxide) in boiling toluene behaves as a 1,3-diene and was trapped by norborene forming sulphoxide 194 in 78% yield ° (equation 103). [Pg.277]

On the other hand, the use of a-cyclodextrin decreased the rate of the reaction. This inhibition was explained by the fact that the relatively smaller cavity can only accommodate the binding of cyclopentadiene, leaving no room for the dienophile. Similar results were observed between the reaction of cyclopentadiene and acrylonitrile. The reaction between hydroxymethylanthracene and N-ethylmaleimide in water at 45°C has a second-order rate constant over 200 times larger than in acetonitrile (Eq. 12.2). In this case, the P-cyclodextrin became an inhibitor rather than an activator due to the even larger transition state, which cannot fit into its cavity. A slight deactivation was also observed with a salting-in salt solution (e.g., quanidinium chloride aqueous solution). [Pg.377]

Chiral dienophiles, prepared from an aldehyde and asparagine in water followed by reacting with acryloyl chloride, reacted with cyclopentadiene at room temperature in water or ethanol-water to provide cycloadducts diastereoselectively and chiral products upon separation and hydrolysis (47-64% ee for the endo isomers endo/exo 82 18) (Eq. 12.18).61... [Pg.387]

Schwartz s Reagent Bis(cyclopentadienyl)zirconium chloride hydride Zirconium, chlorodi-B-cyclopentadienylhydro- (8) Zirconium, chlorobis(ii5-2,4-cyclopentadien-1-yl)hydro- (9) (37342-97-5)... [Pg.42]

The cycloaddition of allenyl cations with 1,3-dienes results in a number of intermediate cations from which different products result. The allenyl cations 38 are generated first by the reaction of propargyl chlorides with zinc chloride and are then allowed to react with cyclopentadiene or other 1,3-dienes. The products of cycloaddition depend on the substituents on the allenyl cations32,35. The products formed with cyclopentadiene are given in equation 14. [Pg.877]

The procedure described above is essentially that of Thomas.2 Nor-bomylene has also been prepared by the additon of ethylene to monomeric cyclopentadiene 3 [Org. Syntheses, 32, 41 (1952)], by dehydration of j3-norbomeol with phosphorus pentoxide,4 and by dehydrohalogena-tion of norbornyl chloride or bromide using quinoline.4-6... [Pg.34]

A concise and efficient asymmetric synthesis of L-( + )-carbafuranomycin 452, a novel analog of L-( + )-furanomycin, which is an unusual antibiotic amino acid of great interest, due to its activity as an isoleucine antagonist, has been reported (496). The synthesis starts with the 1,3-dipolar cycloaddition of a chiral nitrile oxide (obtained in situ from hydroximinoyl chloride 453 via slow addition of NEt3) with cyclopentadiene. Then methylation of cyclopentenyl acetate 454,... [Pg.100]

The source of alcohol 50 is most probably acid-catalysed hydrolysis of 49 to the nitrosocarbonylbenzene intermediates 51, which, like acid chlorides, react with water to give benzoic acids 52 (Scheme 1 pathway (i)).159 Acylnitroso intermediates 51 were trapped as the Diels Alder adducts 53 in reactions in CH3CN/H20 and in the presence of cyclopentadiene. In CH3CN/10% H280, 53 was enriched in lsO... [Pg.67]


See other pages where 1,3-Cyclopentadiene chloride is mentioned: [Pg.25]    [Pg.405]    [Pg.250]    [Pg.411]    [Pg.157]    [Pg.118]    [Pg.405]    [Pg.28]    [Pg.78]    [Pg.76]    [Pg.277]    [Pg.63]    [Pg.901]    [Pg.223]    [Pg.76]    [Pg.214]    [Pg.150]    [Pg.167]    [Pg.44]    [Pg.244]   
See also in sourсe #XX -- [ Pg.408 ]




SEARCH



Addition of Hydrogen Chloride to 1,3 Cyclopentadiene

Cyclopentadiene reaction with hydrogen chloride

© 2024 chempedia.info