Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2- Disubstituted hydrazine

Hydrazones are formed from mono- and Ai,A/-disubstituted hydrazines. Hydrazine itself can give either hydrazones or azines, depending mainly on the ratio of carbonyl component to hydrazine. The ease of formation of these compounds depends on the nature of the carbonyl constituent ... [Pg.281]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

Phthalic anhydride and diethyl phthalate are easily converted with hydrazine into 4-hydroxyphthalazin-l(2/f)-one. Its substituted derivatives have been prepared using substituted hydrazines, substituted phthalic anhydrides, or diesters or disodium salts of substituted phthalic acids (Scheme 81). However, condensation of phenylhydrazine with phthalic anhydride gives only a small amount of the corresponding phthalazine, the main product being 2-anilinophthalimide. This can be rearranged in the presence of base into the phthalazine derivative. For the preparation of 2,3-disubstituted derivatives, 1,2-disub-stituted hydrazines are reacted with the appropriate phthalic anhydrides or phthaloyl chlorides. Derivatives of 4-amino- or 4-hydrazino-phthalazin-l(2iT)-one have been prepared either from the corresponding monothiophthalimide and 3-aminoisoindolin-3-one (1S4) or from ethyl 2-cyanobenzoate (155) and hydrazine hydrate (Scheme 82). Similarly,... [Pg.47]

AK(30)26l). 2-Acetoxyfuran-3(2i/)-ones react with hydrazine to give 3,6-disubstituted-4-ethoxycarbonylpyridazin-4(li/)-ones (184) as the main product, but with mono-substituted hydrazines in addition to these pyridazines anhydro-5-hydroxypyridazinium hydroxide (185) derivatives and some pyrazole derivatives are also formed (Scheme 102) (79JOC3053). The... [Pg.53]

Hydroxyphthalazin-l(2//)-one is obtained in a smooth reaction between phthalic anhydride and hydrazine hydrate and this is again the starting compound for many 1-substituted and/or 1,4-disubstituted phthalazines. The transformations of 1,4-dichloro-phthalazine, which is prepared in the usual manner, follow a similar pattern as shown for pyridazines in Scheme 110. On the other hand, phthalonitrile is the preferential starting compound for amino- and hydrazino-phthalazines. The most satisfactory synthesis of phthalazine is the reaction between a,a,a, a -tetrachloro-o-xylene and hydrazine sulfate in sulfuric acid (67FRP1438827), alt iough catalytic dehalogenation of 1-chloro- or 1,4-dichloro-phthalazine or oxidation of 1-hydrazinophthalazine also provides the parent compound in moderate yield. [Pg.56]

Other methods of generating a-aminoketones in situ are common, if somewhat less general than the methods already described. 2-Nitrovinylpyrrolidine, which is readily available, yields 2,3-bis(3-aminopropyl)pyrazine on reduction and this almost certainly involves ring opening of the intermediate enamine to an a-aminoketone which then dimerizes under the reaction conditions (Scheme 59) (78TL2217). Nitroethylene derivatives have also served as a-aminoketone precursors via ammonolysis of the derived epoxides at elevated temperatures (Scheme 60) (76S53). Condensation of 1,1-disubstituted hydrazine derivatives with a-nitro-/3-ethoxyethylene derivatives has been used in the synthesis of l,4-dialkylamino-l,4-dihydropyrazines (Scheme 61) (77S136). [Pg.186]

The imonium salt (199), obtained from ynamines and phosgeneimonium chloVide, underwent ready reaction with monosubstituted hydrazines to give the 3,5-bis(dimethyl-amino)pyrazole (200) (68T4217, 69T3453). Similarly, the adduct (201), resulting from the addition of phosgene to ynamines, likewise reacted with sym-disubstituted hydrazines to give pyrazoles (202). With hydroxylamine derivatives the isoxazolinone (203) was obtained. [Pg.132]

Formation of a 1,2-disubstituted hydrazine by acid hydrolysis of an appropriately substituted pyrazolidine has been noted (67HC(22)l), but the most interesting ring fission of pyrazolidines involves the N(l)—N(2) bond of 1-phenylpyrazolidines (421). If, instead of phenylhydrazone, compound (421) is used in the Fischer indole synthesis, N- aminopropylin-doles are formed (73T4045). Scheme 39 shows the reaction with cyclohexanone. [Pg.256]

The synthesis of A -pyrazolines by reaction of a 1,2-disubstituted hydrazine, formalin and a carbonyl compound, known as the Hinman synthesis, probably proceeds by the mechanism shown in Scheme 57 (69BSF3300). [Pg.284]

Hydroxyquinazolines react with primary amines or hydrazines to form 3-substituted 4(3//)quinazolinones (15). > The mechanism was shown to involve ring opening because with secondary amines (where ring closure is not possible) A-disubstituted benzamides are formed. Grignard reagents do not always react in the normal way with... [Pg.267]

Reaction of 2,4-dichloro-l,5-naphthyridine with ammonia (170°, 20 hr), hydrazine (100°, 16 hr), or aqueous hydrochloric acid (100°, 3 hr) was shown to yield the 2-amino- (47% yield) and 2-hydroxy-4-chloro derivatives (66% yield), but 2-hydrazino substitution (68% yield) was assumed. Disubstitution with ammonia (190°, 4 hr), hydrazine (100°, 48 hr), and ammonia-phenol (180°, 6 hr) occurred in high yield. Displacement of the 4-oxo group in 2,4-dioxo-l,5-naphthyridine occurs with aniline plus its hydrochloride (180°, 12 hr, 88% yield) to yield 429. Oxo groups in the 2- or 4-positions were... [Pg.378]

Deactivation (weak) from the adjoining ring does not prevent facile disubstitution of 4-methyl- and 4-phenyl-2,7-dichloro-1,8-naphthyridines wdth alkoxides (65°, 30 min), p-phenetidine (ca. 200°, 2 hr), hydrazine hydrate (100°, 8 hr), or diethylaminoethylmer-captide (in xylene, 145°, 24 hr) mono-substitution has not been reported. Nor does stronger deactivation prevent easy 2-oxonation of 5,7-dimethoxy-l-methylnaphthyridinium iodide wdth alkaline ferricyanide via hydroxide ion attack adjacent to the positive charge and loss of hydride ion by oxidation. [Pg.381]

One year later, Tietze and co-workers (97BMC1303) presented a general and straightforward method for the synthesis of diverse polymer-bound -keto esters starting from acid chlorides and Meldrum s acid. One such resin-bound y3-keto ester, 43, was treated with hydrazine hydrate in THF to afford resin-ffee N-2-unsubstituted pyrazolone 44 in 84% yield (Scheme 13). In the same paper, the synthesis of a large number of 4,5-disubstituted 2-phenyl-2,4-dihydro-37/-pyrazol-3-ones was reported. [Pg.83]

The reaction of disubstituted diacetylenes with hydrazine hydrate was reported by Darbinyan et al. (70AKZ640). In the first stage the addition of hydrazine to the terminal carbon atom of the diacetylene system is analogous to that of primary amines to diacetylene (69ZC108 69ZC110). With monosubstituted diacetylenes (R = H), hydrazine adds to the terminal triple bond. This leads to the formation of vinylacetylenic hydrazine 22 which cyclizes to dihydropyrazole 23 subjected to further isomerization to the pyrazole 25. It is possible that hydrazine 22 undergoes hydration to the ketone 24 which can easily be cyclized to the pyrazole 25... [Pg.166]

Azines can be reduced catalytically to the disubstituted hydrazines (24,51) and then to the amine if the reduction is continued (108). The hydrogenolysis chemistry is thus that of hydrazines. The hydrazine can be formed in situ by hydrogenation of a mixture of hydrazine and 2 mol of carbonyl compound... [Pg.169]

Acylation of 2-aroylimidazoles 492 gave 1-acyl-4,5-disubstituted imidazoles 493, whose cyclocondensation with hydrazine hydrate gave (88JIC784) imidazotriazines 494. [Pg.99]

Regarding the series of hetero aromatic pentacyclic compounds with three heteroatoms, an accelerated synthesis of 3,5-disubstituted 4-amino-1,2,4-triazoles 66 under microwave irradiation has been reported by thermic rearrangement of dihydro-1,2,4,5 tetrazine 65 (Scheme 22). This product was obtained by reaction of aromatic nitriles with hydrazine under microwave irradiation [53]. The main limitation of the method is that exclusively symmetrically 3,5-disubstituted (aromatic) triazoles can be obtained. [Pg.227]

Under the same reaction conditions, -keto esters which have been alkylated on the a-carbon atom (thus leading to 3,4-disubstituted 5-pyrazolones upon treatment with hydrazine) give allenic esters in good (50-70%) yield (158). The mechanism (Scheme 36) again appears to involve thallation of the enamine tautomer of the 5 -pyrazolone, but deprotonation now takes place... [Pg.201]

Disubstituted triazolium salts are prepared from alkyl or aryl hydrazines via an oxadiazolium salt 28 (Scheme 16). Addition of a chiral amine on this salt resulted in a ring opening - ring closure reaction affording the triazolium salts 29. [Pg.202]

The results of the study reported here show clearly that, upon release into the atmosphere, N,N-dlmethylhydrazlne (UDMH) can be rapidly converted to N-nitrosodimethylamine by its reaction with atmospheric ozone. A similar conclusion can be reached concerning nitrosamine formation from other unsymmetrically disubstituted hydrazines ... [Pg.130]

Disubstituted tetrazoles are conveniently prepared from acyl hydrazines (98) and diazonium salts.166 The reaction proceeds through the intermediate tetrazenes (99) followed by cyclization to the tetrazole (100) (Scheme 13). The intermediate can be isolated under mildly basic conditions. Symmetrically 1,2-diacylated hydrazines yield 1-substituted tetrazoles through the elimination of one of the acyl groups.166 - 168 Diformyl-hydrazine is a very convenient starting material for 1-substituted tetrazoles.166, Unsymmetrically 1,2-diacylated hydrazine usually results in mixtures.169... [Pg.231]

Synthesis from pyrido[7,2-a/pyrimidines. Reaction of the disubstituted pyridopyrimidinone 416 with hydrazine gives the aminopyrazole-fused product 417 (Equation 153) <1996FA781, 2003JIC311, 2004IJB1561>. Similarly, substituent interaction in the pyridopyrimidine 418 with amines in toluene at reflux gives, in various proportions, diastereomeric mixtures of the pyrrolopyridopyrimidines 419 and 420 (Equation 154) <2003T4581>. [Pg.939]

Since the aminophospholanes are relatively difficult to prepare, the reaction with the disubstituted hydrazine, if the latter is available, would be the method of choice. [Pg.130]

In an extension of previous work on conjugated enamine carbonyl derivatives, reaction of the pyrazolone 91 with IV.lV-disubstituted hydrazines on heating in an alcohol solvent afforded the hexahydropyrazolo[4,3-Michael-type addition of the alcohol to a pre-formed pyrazolo-diazepine, was excluded <06T8126>. [Pg.450]

Disubstituted 1,2,3-triazoles are usually minor components in the product mixtures obtained from reactions of triazole with electrophiles (see Section 5.01.5). The few regioselective syntheses of such compounds include a reaction of aminoacetophenones 1235 with hydrazines. The reaction with methylhydrazine proceeds well without any catalysis, but that with phenylhydrazine requires cupric chloride as a catalyst. It is assumed that hydrazone 1236 that forms in the first step is in a tautomeric equilibrium with its azo form 1237. However, it is not clear how bond formation between the nitrogen atoms and oxidation to the triazole system occurs. 4-Aryltriazoles 1238 are obtained in 50-66% yield (Scheme 205) <2003SC3513>. [Pg.138]

Microwave irradiation of a reaction mixture containing aromatic nitriles, hydrazine hydrate, hydrazine dihydrochloride, and ethylene glycol as solvent in a one-pot process gave 3,5-disubstituted 4-amino-l,2,4-triazoles 98a-i in excellent yields (Equation 35 and Table 14) <2000TL1539>. [Pg.177]

Palladium-catalyzed cyclization reactions with aryl halides have been used to synthesize pyrazole derivatives. V-Aryl-lV-(c>-bromobenzyl)hydrazines 26 participated in a palladium-catalyzed intramolecular amination reaction to give 2-aryl-2W-indazoles 27 . Palladium-catalyzed cascade intermolecular queuing-cyclocondensation reaction of o-iodophenol (28) with dimethylallene and aryl hydrazines provided pyrazolyl chromanones 29 <00TL7129>. A novel one-pot synthesis of 3,5-disubstituted-2-pyrazolines 32 has been achieved with an unexpected coupling-isomerization sequence of haloarene 30, propargyl alcohol 31, and methylhydrazine <00ACIE1253>. [Pg.169]

This cascade has also been adapted to the synthesis of six-membered /V-hclcrocyclcs by employing 1,2-disubstituted hydrazines as the nucleophile (Scheme 13) (unpublished data). [Pg.91]

Intermolecular cross aldolization of metallo-aldehyde enolates typically suffers from polyaldolization, product dehydration and competitive Tishchenko-type processes [32]. While such cross-aldolizations have been achieved through amine catalysis and the use of aldehyde-derived enol silanes [33], the use of aldehyde enolates in this capacity is otherwise undeveloped. Under hydrogenation conditions, acrolein and crotonaldehyde serve as metallo-aldehyde enolate precursors, participating in selective cross-aldolization with a-ketoaldehydes [24c]. The resulting/ -hydroxy-y-ketoaldehydes are highly unstable, but may be trapped in situ through the addition of methanolic hydrazine to afford 3,5-disubstituted pyridazines (Table 22.4). [Pg.721]


See other pages where 1.2- Disubstituted hydrazine is mentioned: [Pg.141]    [Pg.278]    [Pg.246]    [Pg.281]    [Pg.159]    [Pg.12]    [Pg.76]    [Pg.109]    [Pg.263]    [Pg.202]    [Pg.316]    [Pg.130]    [Pg.44]    [Pg.112]    [Pg.209]    [Pg.231]    [Pg.257]    [Pg.197]    [Pg.429]    [Pg.181]    [Pg.346]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



1,1-Diazene via oxidation of 1,1-disubstituted hydrazines

1.2- Disubstituted hydrazine hydrochlorides, reaction with

Aminonitrenes via oxidation of 1,1-disubstituted hydrazines

Nitrenes, aminosynthesis via oxidation of 1,1-disubstituted hydrazines

Reduction of nitrosamines to asymmetrically disubstituted hydrazines

© 2024 chempedia.info