Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds cyclic

Numerous pyrrole derivatives were synthesized from enamine carbonyl compounds. Cyclic enaminoamides with a chlorine atom in the jS -position... [Pg.284]

The acetals you have met so far were formed by reaction of two molecules of alcohol with one of carbonyl compound. Cyclic acetals, formed by reaction of a single molecule of a diol, a compound containing two hydroxyl groups, are also important. When the diol is ethylene glycol (as in this example) the five-membered cyclic acetal is known as a dioxolane. [Pg.346]

Polyethers are obtained from three different classes of monomers, namely, carbonyl compounds, cyclic ethers, and phenols. They are manufactured by a variety of polymerization processes, such as polymerization (polyacetal), ring-opening polymerization (polyethylene oxide, polyprophylene oxide, and epoxy resins), oxidative coupling (Polyphenylene oxide), and polycondensation (polysulfone). [Pg.486]

Rearrangement of (3-amino alcohols upon diazotization with nitrous acid to give carbonyl compounds. Cyclic alcohols yield ring expanded or contracted products ... [Pg.225]

Polyethers may be obtained from three different classes of monomer, namely carbonyl compounds, cyclic ethers and phenols. These three types of polyether are considered separately in this chapter. [Pg.152]

Supplement 1952 2666-3031 Carbonyl compounds Ethylene carbonate, 100. Piperonal, 116. Thioindigo, 177. Fluorescein, 222. Carboxylic acids Piperonylic acid, 269. Amines, 328. Three Cyclic Oxygens, 381. Four Cyclic Oxygens, 433. Fiite Cyclic Oxygens, 459.. . . ... [Pg.1123]

XXIV XXIV, 1st 1936 3555-3633 Two Cyclic Nitrogens (continued). j Carbonyl compounds Antipyrin, 27. [Pg.1124]

One extra disconnection is all we need to cope with misaturated heterocycles. If a nitrogen atom is joined to a double bond in a ring, we have a cyclic enamine. This is made from an amine and a carbonyl compound in the same way as ordinary enamines ... [Pg.81]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

The rt,/3-unsaturated linear carbonyl compound 39 is obtained by the decomposition of the cyclic hydroperoxide 38 with PdCl2,[35]. The a, 0-epoxy ketone 40 is isomerized to the /3-diketone 41 with Pd(0) catalyst[36]. The 1,4-epiperoxide 42 is converted into the /3-hydroxy ketone 43 and other products[37]. [Pg.533]

Cyclic Peroxides. CycHc diperoxides (4) and triperoxides (5) are soHds and the low molecular weight compounds are shock-sensitive and explosive (151). The melting points of some characteristic compounds of this type are given in Table 5. They can be reduced to carbonyl compounds and alcohols with zinc and alkaH, zinc and acetic acid, aluminum amalgam, Grignard reagents, and warm acidified iodides (44,122). They are more difficult to analyze by titration with acidified iodides than the acycHc peroxides and have been sucessfuUy analyzed by gas chromatography (112). [Pg.116]

In the oxaziridines (1) ring positions 1, 2 and 3 are attributed to oxygen, nitrogen and carbon respectively. The latter almost always is in the oxidation state of a carbonyl compound and only in rare cases that of a carboxylic acid. Oxaziridinones are not known. The nitrogen can be substituted by aryl, alkyl, H or acyl the substituent causes large differences in chemical behavior. Fused derivatives (4), accessible from cyclic starting materials (Section 5.08.4.1), do not differ from monocyclic oxaziridines. [Pg.196]

A carbonyl group can be protected as a sulfur derivative—for example, a dithio acetal or ketal, 1,3-dithiane, or 1,3-dithiolane—by reaction of the carbonyl compound in the presence of an acid catalyst with a thiol or dithiol. The derivatives are in general cleaved by reaction with Hg(II) salts or oxidation acidic hydrolysis is unsatisfactory. The acyclic derivatives are formed and hydrolyzed much more readily than their cyclic counterparts. Representative examples of formation and cleavage are shown below. [Pg.198]

Cyclic g-haloacetals and -ketals have been prepared by variations on two basic methods. The most frequently used method involves the combination of an a,B-unsaturated carbonyl compound (acrolein, methyl vinyl ketone, croton-aldehyde, etc.) a diol, and the anhydrous hydrogen halide. All possible sequences of combining these three have been used. In most cases the... [Pg.143]

As was mentioned in Section 13.2, the [27t + 27i] photocycloaddition of alkenes is an allowed reaction according to orbital symmetry considerations. Among the most useful reactions in this categoty, from a synthetic point of view, are intramolecular [27t + 2ti] cycloadditions of dienes and intermolecular [2ti + 2ti] cycloadditions of alkenes with cyclic a, -unsaturated carbonyl compounds. These reactions will be discussed in more detail in Section 6.4 of Part B. [Pg.771]

Upon addition of a base—triethylamine is often used—the sulfonium salt 7 is deprotonated to give a sulfonium ylide 8. The latter decomposes into the carbonyl compound 2 and dimethyl sulfide 9 through /3-elimination via a cyclic transition state. [Pg.276]

The net effect of the Stork reaction is the Michael addition of a ketone to an cn/3-unsaturated carbonyl compound. For example, cyclohexanone reacts with the. cyclic amine pyrrolidine to yield an enamine further reaction with an enone such as 3-buten-2-one yields a Michael adduct and aqueous hydrolysis completes the sequence to provide a 1,5-diketone (Figure 23.8). [Pg.897]


See other pages where Carbonyl compounds cyclic is mentioned: [Pg.24]    [Pg.43]    [Pg.24]    [Pg.43]    [Pg.1123]    [Pg.1125]    [Pg.44]    [Pg.48]    [Pg.105]    [Pg.196]    [Pg.177]    [Pg.184]    [Pg.428]    [Pg.296]    [Pg.101]    [Pg.215]    [Pg.249]    [Pg.238]   


SEARCH



Carbonyl compounds, cyclic azosynthesis

Carbonyl compounds, cyclic azosynthesis via oxidation of hydrazides

Cyclic compounds

Saturated Cyclic Carbonyl Compounds

© 2024 chempedia.info