Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Erythro configuration

Most glycosphingobpids bave the configuration erythro 2S,3R in the aminoalcohol moiety, but oceanalin A, a a,o)-bifunctionalized sphingoid from an Australian... [Pg.1047]

In stereoselective antitheses of chiral open-chain molecules transformations into cyclic precursors should be tried. The erythro-configurated acetylenic alcohol given below, for example, is disconnected into an acetylene monoanion and a symmetrical oxirane (M. A. Adams, 1979). Since nucleophilic substitution occurs with inversion of configuration this oxirane must be trens-conilgurated its precursor is commercially available trans-2-butene. [Pg.204]

Erythro and three describe the relative configuration (Section 7 5) of two chirality centers within a single molecule... [Pg.302]

Sometimes the terms erythro and threo are used to specify fee relative configuration of two adjacent stereogenic centers. The terms are derived fom fee sugars erythrose and threose. The terms were originally defined such feat a Fischer projection formula in which two adjacent substituents were on the same side was fee erythro isomer and feat in whidi the substituents were on opposite sides was the threo isomer. [Pg.84]

The two stereoisomeric furanose forms of D-erythrose ae naned a-D-erythro-furanose and p-D-erythrofuranose. The prefixes a and p describe the relative configuration of the anorneric cabon. The configuration of the anorneric cabon is cornpaed with that of the highest numbered chirality center in the molecule—the one that determines whether the cabohydrate is d or l. Chemists use a simplified, informal version of the lUPAC rules for assigning a and p that holds for ca bohydrates up to and including hexoses. [Pg.1034]

Erythro (Section 7.11) Term applied to the relative configuration of two chirality centers within a molecule. The erythro stereoisomer has like substituents on the same side of a Fischer projection. [Pg.1283]

Relative configuration (Section 7.5) Stereochemical conhgu-ration on a comparative, rather than an absolute, basis. Terms such as D, L, erythro, threo, a, and (3 describe relative conhguration. [Pg.1292]

Risaliti et al. (22), have shown that in the addition of the electrophilic olefins to the enamines of cyclohexanone, the formation of the less substituted enamine is favored when a bulky group is present at the electrophilic carbon atom. For instance, the reaction of (8-nitrostyrene with the morpholine enamine of cyclohexanone gave only the trisubstituted isomer (30) with the substituent in the axial orientation (23). The product on hydrolysis led to the ketone (31) to which erythro configuration was assigned on the grounds illustrated in Scheme 3 (24). [Pg.11]

Of the four possible 5-deoxy-pent-4-enofuranoses, the D-erythro-isomer was of interest as a potential source of derivatives of L-lyxofuranose. For this purpose, a vinyl ether having the D-en/ hro-configuration has been prepared from derivatives of D-ribose. Condensation of D-ribose with acetone in the presence of methanol, cupric sulfate and sulfuric acid at 30°C., as described by Levene and Stiller(30) afforded a sirupy product consisting mainly of methyl 2,3-O-isopropylidene-D-ribofuranose (40). Treatment of a pyridine solution of the sirup with tosyl chloride... [Pg.137]

An interesting example from carbohydrate chemistry is the boron trifluoride-diethyl ether complex catalyzed nucleophilic addition of silyl enol ethers to chiral imines (from n-glyceralde-hyde or D-serinal)22. This reaction yields unsaturated y-butyrolactones with predominantly the D-arabino configuration (and almost complete Cram-type erythro selectivity). [Pg.765]

Whereas SHMT in vivo has a biosynthetic function, threonine aldolase catalyzes the degradation of threonine both l- and D-spedfic ThrA enzymes are known [16,192]. Typically, ThrA enzymes show complete enantiopreference for their natural a-D- or a-t-amino configuration but, with few exceptions, have only low specificity for the relative threo/erythro-configuration (e.g. (122)/(123)) [193]. Likewise, SHMT is highly selective for the L-configuration, but has poor threo/erythro selectivity [194]. For biocatalytic applications, the knovm SHMT, d- and t-ThrA show broad substrate tolerance for various acceptor aldehydes, notably induding aromatic aldehydes [193-196] however, a,P-unsaturated aldehydes are not accepted [197]. For preparative reactions, excess of (120) must compensate for the unfavorable equilibrium constant [34] to achieve economical yields. [Pg.308]

The first important evidence for the existence of this mechanism was the demonstration that retention of configuration can occur if the substrate is suitable. It was shown that the threo dl pair of 3-bromo-2-butanol when treated with HBr gave (f/-2,3-dibromobutane, while the erythro pair gave the meso isomer ... [Pg.405]

Juvabione is a terpene-derived ketoester that has been isolated from various plant sources. There are two stereoisomers, both of which occur naturally with R-configuration at C(4) of the cyclohexene ring and are referred to as erythro- and f/trao-juvabione. The 7(.S )-cnan(iomcr is sometimes called epijuvabione. Juvabione exhibits juvenile hormone activity in insects that is, it can modify the process of metamorphosis.18... [Pg.1174]

The synthesis in Scheme 13.13 leads diastereospecifically to the erythro stereoisomer. An intramolecular enolate alkylation in Step B gave a bicyclic intermediate. The relative configuration of C(4) and C(7) was established by the hydrogenation in Step C. The hydrogen is added from the less hindered exo face of the bicyclic enone. This reaction is an example of the use of geometric constraints of a ring system to control relative stereochemistry. [Pg.1180]

Enol lactones are assumed to form from iV-methylisoquinolinium salts as a result of a Hofmann-type degradation process. This P elimination is a highly stereospecific reaction in which Z isomers are produced from precursors of erythro configuration and isomers from threo diastereomers(5,97). This fact seems to suggest that syn rather than the more usual anti elimination takes place. Examination of models indicates, however, that there is a preferred conformation in which the C-8 hydrogen is in the syn and coplanar position to the quaternary nitrogen. This hypothesis was proved correct in experiments carried out in vitro (5,14,15,91-94). [Pg.265]

The enol lactones were synthesized by Hofmann degradation of metho salts of classic phthalideisoquinoline alkaloids. The biogenetically relevant transformations were highly stereospecific. In this way aobamidine (96) was obtained from the methiodide of (erythro) bicuculline (88) (2), and ad-lumidiceine enol lactone (97) was produced from both (threo) isomeric adlumidiceine (89) and capnoidine (90) methiodides (14,15,91-93). (Z)- (98) and ( )-N-methylhydrastine (99) were obtained from / - (91, erythro) and a-N-methylhydrastinium (92, threo) iodides (5,87,91,96-98), respectively, as were (Z)- (101) and (JE)-narceine enol lactones (102) synthesized from a- (94, erythro) and /J-narcotine (95, threo) quaternary N-metho salts (87,90), respectively. In a similar process /J-hydrastine (91) JV-oxide heated in chloroform yielded enol lactone 124 of Z configuration (99) however, a-narcotine (94) N-oxide was transformed to benzoxazocine 125 (99). ... [Pg.267]

Intramolecular cycloadditions of chiral nitrones provide a useful tool for the preparation of bioactive heterocyclic compounds.63 Shing et al. demonstrated that 1,3-dipolar cycloaddition of nitrones derived from 3-0-allyl-hexoses is dependent only on the relative configuration at C-2,3, as shown in Scheme 8.16. Thus 3-0-allyl-D-glucose and -D-altrose (both with threo-configuration at C-2,3) produce oxepanes selectively, whereas 3-O-allyl-D-allose and -D-man-nose (both with erythro-configuration at C-2,3) give tetrahydropyranes selectively.80... [Pg.255]

Tetraalkylstannanes with a /i-acyloxy group undergo highly stereospecific elimination to yield Z - or E -unsaturated products, depending on whether the organotin compound has erythro- or threo-configuration, as depicted in reactions 72 and 73, respectively324. [Pg.419]

Chiral nitrones derived from L-valine (62a-c) react with methyl acrylate to afford the corresponding diastereomeric 3,5-disubstituted isoxazolidines (565a-c) to (568a-c). The dibenzyl substituted nitrone (62a) also gave 3,4-disubstituted isoxazolidine (569) in 4% yield. The stereoselectivity was dependent on the steric hindrance of the nitrone and on reaction conditions. High pressure decreased the reaction time of the cycloadditions. The major products were found to have the C-3/C-6 erythro and C-3/C-5 Irons configuration (Scheme 2.262) (771). [Pg.338]

Double bonds present along a polymer chain are stereoisomeric centers, which may have a cis or trans configuration. Polymers of 1,3-dienes with 1,4 additions of the monomeric units contain double bonds along the chains and may contain up to two stereoisomeric tetrahedral centers. Stereoregular polymers can be cis or trans tactic, isotactic or syndiotactic, and diisotactic or disyndio-tactic if two stereoisomeric tetrahedral centers are present. In the latter case erythro and threo structures are defined depending on the relative configurations of two chiral carbon atoms.1... [Pg.94]


See other pages where Erythro configuration is mentioned: [Pg.379]    [Pg.379]    [Pg.162]    [Pg.1292]    [Pg.314]    [Pg.620]    [Pg.12]    [Pg.159]    [Pg.163]    [Pg.53]    [Pg.91]    [Pg.564]    [Pg.691]    [Pg.72]    [Pg.14]    [Pg.284]    [Pg.286]    [Pg.411]    [Pg.412]    [Pg.1323]    [Pg.323]    [Pg.564]    [Pg.252]    [Pg.457]    [Pg.53]    [Pg.100]    [Pg.37]    [Pg.26]    [Pg.319]    [Pg.75]    [Pg.102]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Configuration erythro and threo

Erythro

Erythro-trans-threo configuration

© 2024 chempedia.info