Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanone isotopically substituted

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

Hence, the first clearcut evidence for the involvement of enol radical cations in ketone oxidation reactions was provided by Henry [109] and Littler [110,112]. From kinetic results and product studies it was concluded that in the oxidation of cyclohexanone using the outer-sphere one-electron oxidants, tris-substituted 2,2 -bipyridyl or 1,10-phenanthroline complexes of iron(III) and ruthenium(III) or sodium hexachloroiridate(IV) (IrCI), the cyclohexenol radical cation (65" ) is formed, which rapidly deprotonates to the a-carbonyl radical 66. An upper limit for the deuterium isotope effect in the oxidation step (k /kjy < 2) suggests that electron transfer from the enol to the metal complex occurs prior to the loss of the proton [109]. In the reaction with the ruthenium(III) salt, four main products were formed 2-hydroxycyclohexanone (67), cyclohexenone, cyclopen tanecarboxylic acid and 1,2-cyclohexanedione, whereas oxidation with IrCl afforded 2-chlorocyclohexanone in almost quantitative yield. Similarly, enol radical cations can be invoked in the oxidation reactions of aliphatic ketones with the substitution inert dodecatungstocobaltate(III), CoW,20 o complex [169]. Unfortunately, these results have never been linked to the general concept of inversion of stability order of enol/ketone systems (Sect. 2) and thus have never received wide attention. [Pg.204]


See other pages where Cyclohexanone isotopically substituted is mentioned: [Pg.210]    [Pg.71]   


SEARCH



Cyclohexanone, 4-substituted

Cyclohexanones, -substituted

Isotope substitution

Isotopic substitution

Isotopically substituted

© 2024 chempedia.info