Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanones reactions with

Caprolactam [105-60-2] (2-oxohexamethyleiiiiriiQe, liexaliydro-2J -a2epin-2-one) is one of the most widely used chemical intermediates. However, almost all of the aimual production of 3.0 x 10 t is consumed as the monomer for nylon-6 fibers and plastics (see Fibers survey Polyamides, plastics). Cyclohexanone, which is the most common organic precursor of caprolactam, is made from benzene by either phenol hydrogenation or cyclohexane oxidation (see Cyclohexanoland cyclohexanone). Reaction with ammonia-derived hydroxjlamine forms cyclohexanone oxime, which undergoes molecular rearrangement to the seven-membered ring S-caprolactam. [Pg.426]

Enolates react with sulfenyl halides to give an a-alkylthio ketone. As shown for cyclohexanone, reaction with LDA followed benzenesulfenyl chloride (PhSCl) produced phenylthio derivative 109. The proton adjacent to both the carbonyl and the sulfur (the a-proton) was more acidic and it was deprotonated with potassium hydride, forming the enolate, and alkylation with iodobutane gave a 91% yield of 110. As mentioned in Chapter 2, the sulfide moiety can be oxidized to a sulfoxide and thermally eliminated (syn elimination, sec. 2.9.C.v) to give an alkene. 9 Similar methodology can be applied to selenides, R—Se—R. O... [Pg.738]

Sahcyhc acid, upon reaction with amyl alcohol and sodium, reduces to a ring-opened ahphatic dicarboxyhc acid, ie, pimelic acid (eq. 5). The reaction proceeds through the intermediate cyclohexanone-2-carboxyhc acid. This novel reaction involves the fission of the aromatic ring to i j -hexahydrosahcyhc acid when sahcyhc acid is heated to 310°C in an autoclave with strong alkah. Pimelic acid is formed in 35—38% yield and is isolated as the diethyl ester. [Pg.285]

Toray. The photonitrosation of cyclohexane or PNC process results in the direct conversion of cyclohexane to cyclohexanone oxime hydrochloride by reaction with nitrosyl chloride in the presence of uv light (15) (see Photochemical technology). Beckmann rearrangement of the cyclohexanone oxime hydrochloride in oleum results in the evolution of HCl, which is recycled to form NOCl by reaction with nitrosylsulfuric acid. The latter is produced by conventional absorption of NO from ammonia oxidation in oleum. Neutralization of the rearrangement mass with ammonia yields 1.7 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. The novel chemistry is as follows ... [Pg.430]

Cyclohexanol can be deterrnined colorimetricaHy by reaction with -hydroxy-ben2aldehyde in sulfuric acid (18). This method can be used in the presence of cyclohexanone and cyclohexane. Cyclohexanol and cyclohexanone both show a maximum absorbency at 535 nm but at 625 nm the absorption by cyclohexanone is negligible, whereas cyclohexanol shows appreciable absorption. [Pg.427]

Formation of a 1,2-disubstituted hydrazine by acid hydrolysis of an appropriately substituted pyrazolidine has been noted (67HC(22)l), but the most interesting ring fission of pyrazolidines involves the N(l)—N(2) bond of 1-phenylpyrazolidines (421). If, instead of phenylhydrazone, compound (421) is used in the Fischer indole synthesis, N- aminopropylin-doles are formed (73T4045). Scheme 39 shows the reaction with cyclohexanone. [Pg.256]

The reaction of vinylogous amides, or ketoaldehydes, with hydroxylamine produced 4,5,6,7-tetrahydro-l,2-benzisoxazole. A side product is the 2,1-benzisoxazole (Scheme 173) (67AHC(8)277). The ring system can also be prepared by the reaction of cyclohexanone enamines with nitrile oxides (Scheme 173) (78S43, 74KGS901). Base treatment produced ring fission products and photolysis resulted in isomerization to benzoxazoles (76JOC13). [Pg.118]

Other secondary amines such as pyrrolidine, di- -butylamine, tetrahydro-quinoline, n-benzylamine, and piperidine were also found to be capable of effecting this reduction. Interestingly, morpholine does not reduce enamines as readily (47) and its acid-catalyzed reaction with norbornanone was reported (45) to give only the corresponding enamine (93), although trace amounts of the reduction product were detected when cyclohexanone was treated with morpholine under these conditions (47a). The yield of morpholine reduction product was increased by using higher temperatures. [Pg.28]

With enamines of cyclic ketones direct C alkylation occurs with allyl and propargyl as well as alkyl halides. The reaction is again sensitive to the polarity of the solvent (29). The pyrrolidine enamine of cyclohexanone on reaction with ethyl iodide in dioxane gave 25% of 2-ethylcyclohexanone on hydrolysis, while in chloroform the yield was increased to 32%. [Pg.121]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

Enamines of cyclic ketones do not form cycloaddition products, but give the mono- or dicarboxanilides (110,111). Thus the enamine (113) on reaction with 1 equivalent of phenyl isocyanate gave 160. Treatment of 113 with 2 equivalents, or 160 with 1 equivalent, of phenyl isocyanate gave the 2,6-disubstituted product (161). Mild acid hydrolysis of 160 and 161 produced the corresponding cyclohexanone(2-mono- and 2,5-di)carbox-anilides (110). [Pg.150]

The reaction of morpholine enamines of cyclic ketones with ethyl azodicarboxylate has also been demonstrated 56,136). The enamine (113) on reaction with ethyl azodicarboxylate can give the 2- or 2,6-bis(N,N di-carboxyhydrazino)cyclohexanones 199 and 200, respectively, on hydrolysis. [Pg.160]

A substituted a,/3-unsaturated aldehyde, cinnamaldehyde, has been observed to undergo the same type of two-step 1,3-cycloaddition reaction with a cyclohexanone enamine as acrolein does, forming in this case a stereo-isomeric mixture of substituted bicycloaminoketones in excellent yield (29a,31a,31b). [Pg.218]

Cyanoallene, when treated with the morpholine enamine of cyclohexanone, undergoes a 1,3-cycloaddition reaction to form 72 (89). The reaction between cyanoallene and diendiamine 73a produces di-1,2-cycloaddition adduct 73 (i 9). The 4a-azonioanthracene ion (73b) readily undergoes a 1,4-cycloaddition reaction with nucleophilic dienophiles such as enamines (89a). The cycloaddition is stereoselective so that the a- and... [Pg.228]

Common reagents such as lithium diisopropylamide (LDA see Chapter 11, Problem 5) react with carbonyl compounds to yield lithium enolate salts and diisopropylamine, e.g., for reaction with cyclohexanone. [Pg.165]

A -Chloromethylamine attacks ketones in alkaline solution with formation of oxaziranes with cyclohexanone, compound 17 is produced in 50% yield. The reaction with aldehydes with zV-chloromethyl-amine yields predominantly acid amides. However, oxaziranes are also produced here as by-products. From benzaldehyde and A -chloro-methylamine, 2-raethyl-3-phenyloxazirane (15) was obtained in 10% yield. [Pg.90]

The reaction of a cyclic ketone—e.g. cyclohexanone 1—with methyl vinyl ketone 2 resulting in a ring closure to yield a bicyclic a ,/3-unsaturated ketone 4, is called the Robinson annulation This reaction has found wide application in the synthesis of terpenes, and especially of steroids. Mechanistically the Robinson annulation consists of two consecutive reactions, a Michael addition followed by an Aldol reaction. Initially, upon treatment with a base, the cyclic ketone 1 is deprotonated to give an enolate, which undergoes a conjugate addition to the methyl vinyl ketone, i.e. a Michael addition, to give a 1,5-diketone 3 ... [Pg.240]

Grignard reagents undergo a general and very useful reaction with ketones. Melhylmagnesium bromide, for example, reacts with cyclohexanone to yield a product with the formula C7HuO. What is the structure of this product if it has an IR absorption at 3400 cm-1 ... [Pg.439]

The net effect of the Stork reaction is the Michael addition of a ketone to an cn/3-unsaturated carbonyl compound. For example, cyclohexanone reacts with the. cyclic amine pyrrolidine to yield an enamine further reaction with an enone such as 3-buten-2-one yields a Michael adduct and aqueous hydrolysis completes the sequence to provide a 1,5-diketone (Figure 23.8). [Pg.897]

Cyclohexanone, 46, 18, 27, 36, 82 reaction with dimethylformamide and phosphorus oxychloride, 46, 18... [Pg.125]

Dimethylformamide, reaction with dimethyl sulfate, 47, 52 reaction with phosphorus oxychloride and cyclohexanone, 16,18 Dimethylformamide-dimethyl sulfate complex, preparation of, 47,... [Pg.128]

Triethyl phosphonoacetate, reaction of sodium derivative with cyclohexanone to yield ethyl cvclo hexy lideneacetate, 46, 45 1 nfluoroacetic anhydride, 46, 98 p,0 0 Trifluorostyrene, 47, 52 Trusopropvl phosphite as reagent in dechlorination of decachlorobi 2,4 cyclopentadienyl, 46, 93 1,3,5-Tnketones, from aroylationof 1,3-diketones, 46, 59 from 4-pyrones, 46, 59 Tnmethylamine oxide, reaction with x-octyl iodide to yield octanal, 47, 96... [Pg.139]

As observed with cyclohexanones, the diastereoselectivity of the addition reaction of trimeth-ylaluminum to 2-methylcyclopentanone depends on the stoichiometry of the reactants. Thus, addition of one equivalent of trimcthylaluminum proceeds via preferential tram attack whereas, due to the "compression effect , addition of an excess of the reagent leads to the formation of the equatorial alcohol via predominant attack from the cis side (Table 3)6. In contrast to the addition reactions with trimethylaluniinum, no reversal of the diastereoselectivity upon change of reagent stoichiometry was observed in the addition of triphenylaluminum to 2-methylcyclopentanone6. Even with an excess of the aluminum reagent trans attack predominates. However, the diastereoselectivity is lower than with the use of an equimolar amount of the reactants. [Pg.15]

When an enolate is forced to take the E configuration, e.g, the enolate derived from cyclohexanone, predominant formation of the anti-aldol might be expected. Surprisingly, early experiments gave more or less stereorandom results in that the reaction with benzaldehyde gave a ratio of. vvtt/ant/ -aldols of 48 521B 23, Contrarily, recent investigations24 reveal a substantial anti selectivity (16 84), which is lowered in a dramatic manner (50 50) by the presence of lithium salts. Thus, the low stereoselectivity in the early experiments may be attributed to impurities of lithium salts or lithium hydroxide. [Pg.457]

A further extension of the MIMIRC reaction is seen in the synthesis of enantiomerically pure cyclohexanones. A successful diastereoselective MIMIRC reaction with 2-(rer/-butyldimethylsi-lyloxy)-4-phenyl-l,3-butadiene and an optically pure (Z)-y-alkoxy-substituted enone was performed using catalytic amounts (5 mol%) of triphenylmethyl perchlorate at — 78 ,C 360,408 (for a further example see Section 1.5.2.4.4.1.). [Pg.998]


See other pages where Cyclohexanones reactions with is mentioned: [Pg.227]    [Pg.227]    [Pg.975]    [Pg.271]    [Pg.430]    [Pg.240]    [Pg.376]    [Pg.154]    [Pg.130]    [Pg.122]    [Pg.38]    [Pg.282]    [Pg.1304]    [Pg.129]    [Pg.12]   


SEARCH



1,2-Ethanediol, reaction with cyclohexanone

Cyclohexanone Aldol reaction, with

Cyclohexanone condensed phase reaction with

Cyclohexanone enamine reaction with dichlorocarbene

Cyclohexanone oxime, reaction with

Cyclohexanone reaction

Cyclohexanone reaction with benzaldehyde

Cyclohexanone reaction with diazomethane

Cyclohexanone reaction with dimethylformamide

Cyclohexanone reaction with hydrazine

Cyclohexanone reaction with hydroxylamine-O-sulfonic acid and ammonia to yield

Cyclohexanone reaction with sodium triethyl phosphonoacetate to yield ethyl cyclohexylideneacetate

Cyclohexanone, 2,2-dimethyllithium enolate reaction with benzaldehyde

Cyclohexanone, reaction with diols

Cyclohexanone, reaction with sodium

Cyclohexanone, reaction with sodium triethyl phosphonoacetate

Cyclohexanones reactions with alkyllithium and alkyl Grignard

Cyclohexanones reactions with boron stabilized carbanions

Cyclohexanones reactions with dialkoxyboryl stabilized carbanions

Cyclohexanones reactions with diazomethane

Dimethylformamide, reaction with dimethyl sulfate and cyclohexanone

Grignard reagents, alkyl reaction with cyclohexanone

Isoquinoline, pivaloyllithiated reaction with cyclohexanone

Lithium diisopropylamide reaction with cyclohexanone

Phosphorus oxychloride, reaction with dimethylformamide and cyclohexanone

Reaction of Lithiomethyl Isocyanide with Hexyl Bromide, Oxirane and Cyclohexanone

Reaction with cyclohexanone

Reaction with cyclohexanone

Reaction with cyclohexanone compounds

Reaction with cyclohexanone reductions

Reactions of Semicarbazide with Cyclohexanone and 2-Furaldehyde in Phosphate Buffer Solution

Triethyl phosphonoacetate, reaction with cyclohexanone

© 2024 chempedia.info