Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanone, reaction with sodium

Sahcyhc acid, upon reaction with amyl alcohol and sodium, reduces to a ring-opened ahphatic dicarboxyhc acid, ie, pimelic acid (eq. 5). The reaction proceeds through the intermediate cyclohexanone-2-carboxyhc acid. This novel reaction involves the fission of the aromatic ring to i j -hexahydrosahcyhc acid when sahcyhc acid is heated to 310°C in an autoclave with strong alkah. Pimelic acid is formed in 35—38% yield and is isolated as the diethyl ester. [Pg.285]

Triethyl phosphonoacetate, reaction of sodium derivative with cyclohexanone to yield ethyl cvclo hexy lideneacetate, 46, 45 1 nfluoroacetic anhydride, 46, 98 p,0 0 Trifluorostyrene, 47, 52 Trusopropvl phosphite as reagent in dechlorination of decachlorobi 2,4 cyclopentadienyl, 46, 93 1,3,5-Tnketones, from aroylationof 1,3-diketones, 46, 59 from 4-pyrones, 46, 59 Tnmethylamine oxide, reaction with x-octyl iodide to yield octanal, 47, 96... [Pg.139]

Acetylcyclohexanone. Method A. Place a mixture of 24-6 g. of cyclohexanone (regenerated from the bisulphite compound) and 61 g. (47 5 ml.) of A.R. acetic anhydride in a 500 ml. three-necked flask, fitted with an efficient sealed stirrer, a gas inlet tube reaching to within 1-2 cm. of the surface of the liquid combined with a thermometer immersed in the liquid (compare Fig. II, 7, 12, 6), and (in the third neck) a gas outlet tube leading to an alkali or water trap (Fig. II, 8, 1). Immerse the flask in a bath of Dry Ice - acetone, stir the mixture vigorously and pass commercial boron trifluoride (via an empty wash bottle and then through 95 per cent, sulphuric acid) as fast as possible (10-20 minutes) until the mixture, kept at 0-10°, is saturated (copious evolution of white fumes when the outlet tube is disconnected from the trap). Replace the Dry Ice-acetone bath by an ice bath and pass the gas in at a slower rate to ensure maximum absorption. Stir for 3 6 hours whilst allowing the ice bath to attain room temperature slowly. Pour the reaction mixture into a solution of 136 g. of hydrated sodium acetate in 250 ml. of water, reflux for 60 minutes (or until the boron fluoride complexes are hydrolysed), cool in ice and extract with three 50 ml. portions of petroleum ether, b.p. 40-60° (1), wash the combined extracts free of acid with sodium bicarbonate solution, dry over anhydrous calcium sulphate, remove the solvent by... [Pg.864]

Oxidation of 4-methylcyclohexanone by addition of nitric acid at about 75°C caused a detonation to occur. These conditions had been used previously to oxidise the corresponding alcohol, but although the ketone is apparently an intermediate in oxidation of the alcohol, the former requires a much higher temperature to start and maintain the reaction. An OTS report, PB73591, mentions a similar violent reaction with cyclohexanone [1], Presence of nitrous acid is essential for the smooth oxidation of cycloalkanones with nitric acid to a, rw-hcxanedioic acids. Because high-purity nitric acid (free of nitrous acid) is now commonly available, addition of a little sodium or potassium nitrite to the acid is necessary before its use to oxidise cycloalkanones [2],... [Pg.1578]

Triethyl phosphonoacetate, reaction of sodium derivative with cyclohexanone to yield ethyl cyclo-hexylideneacetate, 45, 4S Trifluoroacetic anhydride, 45, 98 a,a,a-Trifluoroacetophenone, reaction with triphenylphosphine and sodium chlorodifluoracetate, 48,116 m-Trifluoromethylaniline, methylation of with trimethylphosphate, 49, 111... [Pg.80]

In analogy to 23, the chiralities of [2.2]meta- and [10]paracyclophanecarboxylic acids were also deduced from the results of kinetic resolutions 40-77>. For the application of Horeau s method, (—)-[10]paracyclophanecarboxylic acid (14) was transformed by stereoselective hydrogenation and subsequent sodium borohydride reduction of an intermediate cyclohexanone into the (—)-cis-cyclohexanol 94 which on reaction with racemic 2-phenylbutanoic anhydride afforded a 15% excess of the Ievorotatory acid thereby proving (in agreement with the kinetic resolution of the anhydride of 14, vide supra) the chirality (5) for (—)-14 and all its derivatives 40). Optical comparison with dioxa[10]paracyclophanecarboxylic acid (16) confirmed this result63,108). [Pg.48]

The acylating reagent may be an acid chloride or an acid anhydride. Symmetrical ketones (—CH2 R = R2) yield only a single regioisomer. Thus acetone or cyclohexanone may be acylated with acetic anhydride in the presence of boron trifluoride-etherate to pentane-2,4-dione and 2-acetylcyclohexanone respectively (Expt 5.102). Both diketones are present in the reaction mixture as boron difluoride complexes [(10) and (11) respectively], from which they may be released by treatment with sodium acetate. Pentane-2,4-dione is appreciably water soluble and is isolated by means of its characteristic copper complex (12). [Pg.632]

However, all attempts to activate the a-position of the cyclohexanone ring in order to facilitate a subsequent diazotization, which was to be followed by rhodium carbenoid-mediated aryl C-H insertion onto C-4 [21], were unsatisfactory [22], One of the approaches was based on the generation of the silyl enol ether 35, but attempts to achieve its a-acylation led only to the formation of Paal-Knorr-type cyclization products 36. Chemoselective formylation of 34 to 37 was possible by reaction with ethyl formate in the presence of a large excess of sodium ethoxide, but in situ oxidation of the desired compound 37 to 38, which was the major isolated product, made the reaction impractical (Scheme 6). [Pg.72]

Complex 9 and [CpFe(o-BPXCO)CH 2C1 ] [o-BP = tri(o-biphenyl)-phosphite] were also prepared by the reaction of HC1 with [CpFe(L)-(CO)CH2OEt] (L = PPh3, o-BP) (47). Alkylation of the two complexes with sodium /crt-butyl acetoacetate and pyrroline cyclohexanone enamine yielded six of the eight possible alkylation products. The two products where L was o-BP and the nucleophile was tort-butyl acetoacetate did not form, presumably because of excessive steric hindrance. The excess of one diastereomer over the other ranged from 10 to 64%. [Pg.240]


See other pages where Cyclohexanone, reaction with sodium is mentioned: [Pg.782]    [Pg.160]    [Pg.162]    [Pg.864]    [Pg.427]    [Pg.282]    [Pg.270]    [Pg.703]    [Pg.36]    [Pg.173]    [Pg.19]    [Pg.580]    [Pg.143]    [Pg.132]    [Pg.301]    [Pg.351]    [Pg.155]    [Pg.496]    [Pg.38]    [Pg.703]    [Pg.864]    [Pg.125]    [Pg.209]    [Pg.496]    [Pg.634]    [Pg.496]    [Pg.634]    [Pg.652]    [Pg.496]   


SEARCH



Cyclohexanone reaction

Cyclohexanone reaction with sodium triethyl phosphonoacetate to yield ethyl cyclohexylideneacetate

Cyclohexanone, reaction with sodium triethyl phosphonoacetate

Cyclohexanones reactions with

Reaction with cyclohexanone

Sodium reaction with

© 2024 chempedia.info