Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanol production

Estimated aimual cyclohexanone production capacities are shown in Table 3 the production is greater than 90% captive for caprolactam production (13). The aimual cyclohexanol production is only 10 thousand metric tons. These production figures do not include KA-od (cyclohexanol-cyclohexanone) production for adipic acid. Worldwide annual capacity for cyclohexanone is approximately 3.0 million metric tons, also primarily for caprolactam production. Projected new capacity for caprolactam could add 0.5 million metric tons worldwide in this decade. [Pg.426]

Estimated annual cyclohexanone production capacities were 665x Iff1 t in 1992 the production is greater than 90% captive for caprolactam production. The annual cyclohexanol production is only 10 thousand... [Pg.466]

A sterically demanding PhMe2Si group at the C-3 position of 1-cyclohexanone derivatives affects a highly stereoselective reduction of the C-l carbonyl group by NaBI-L in methanol187. The 3-silyl-l-cyclohexanol product holds a cis configuration. [Pg.474]

Substrates such as H2 which can form strong agostic complexes are expected to inhibit the oxidation of more weakly bound substrates by sequestering the active oxidant (Scheme 9). In fact, the oxidation of cyclohexane was inhibited by the presence of H2 [137]. On removal of the H2 from the reaction system, the rate of cyclohexanol production returns to its original value in the absence of H2, demonstrating that the inhibition is reversible. The pressure at which the rate was half that of the uninhibited reaction (P1/2) was 1.4 atm at 0°C [137]. When H2 was replaced by D2, the P1/2 value became smaller (1.0 atm) [137]. Such an inverse isotope effect can be compared with the value (0.78) reported for H2/D2 binding to a tungsten... [Pg.1605]

The trans-2-bromo-1 -cyclohexanol product of the reaction shown above is... [Pg.27]

Interesting changes in selectivity were observed between the use of isopropanol (polar) and hexane (non-polar) as solvents with hexane giving higher levels of the cis-cyclohexanol product (6 1 compared to 3 1 cis trans ratio). [Pg.531]

Obtain the infrared spectrum of the crude (dry) cyclohexanol product by the capillary film sampling technique. Compare the spectrum of the starting ketone in Figure 6.6 to that of your isolated material. Is there evidence of the unreacted starting material in your product The spectrum of cyclohexanol crude product is shown in Figure 6.7. [Pg.155]

Alkylation of 2-methylaminothiazole (204) with ROH in 85% sulfuric acid gives 2-methylimino-3-alkyl-4-thiazoIine (54). 2-Amino-4-rnethyl-thiazoie alkylated with an excess of isopropanol, however, gives 95% of 2-isopropylamino-4-methyl-5-isopropylthiazole (56). The same result is obtained with cyclohexanol (242). These results and those reported in Sections III.l.C and IV.l.E offer interesting new synthetic possibilities in thiazole chemistry. The reactive species in these alkylations is the conjugate acid of 2-aminothiazole. and the diversity of the products obtained suggests that three nucleophilic centers may be operative in this species. [Pg.47]

In Problem 5 17 (Section 5 13) we saw that acid catalyzed dehydration of 2 2 dimethyl cyclohexanol afforded 1 2 dimethylcyclohexene To explain this product we must wnte a mecha nism for the reaction in which a methyl shift transforms a secondary carbocation to a tertiary one Another product of the dehydration of 2 2 dimethylcyclohexanol is isopropyhdenecyclopentane Wnte a mechanism to rationalize its formation... [Pg.229]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

Cyclohexane. The LPO of cyclohexane [110-82-7] suppUes much of the raw materials needed for nylon-6 and nylon-6,6 production. Cyclohexanol (A) and cyclohexanone (K) maybe produced selectively by using alow conversion process with multiple stages (228—232). The reasons for low conversion and multiple stages (an approach to plug-flow operation) are apparent from Eigure 2. Several catalysts have been reported. The selectivity to A as well as the overall process efficiency can be improved by using boric acid (2,232,233). K/A mixtures are usually oxidized by nitric acid in a second step to adipic acid (233) (see Cyclohexanol and cyclohexanone). [Pg.344]

Dilute nitric acid can be used to oxidize an aliphatic hydrocarbon. For example, a significant use for nitric acid is the oxidation of cyclohexanol and cyclohexanone (qv) to produce adipic acid (qv). Most adipic acid is used for the production of nylon-6,6. [Pg.40]

Secondary alcohols, such as isopropyl alcohol, j -butyl alcohol, 2-pentanol, 3-pentanol, cyclopentanol, and cyclohexanol, have been autoxidized to hydroxyaLkyl hydroperoxides (1, X = OH R = H) (10,44). These autoxidations usually are carried out at ca 20°C with uv radiation in the presence of a photosensitizer, eg, benzophenone. a-Oxygen-substituted dialkyl peroxides (2, X = Y = OH and X = Y = OOH), also are formed and sometimes they are the exclusive products (10). [Pg.113]

Production of cyclohexylamine reflects this balance of raw material versus operating cost stmcture. When aniline cost and availabiUty are reasonable, the preferred route is aniline ring reduction alternatively the cyclohexanol amination route is chosen. [Pg.211]

Contaminant by-products depend upon process routes to the product, so maximum impurity specifications may vary, eg, for CHA produced by aniline hydrogenation versus that made by cyclohexanol amination. Capillary column chromatography has improved resolution and quantitation of contaminants beyond the more fliUy described packed column methods (61) used historically to define specification standards. Wet chemical titrimetry for water by Kad Eisher or amine number by acid titration have changed Httle except for thein automation. Colorimetric methods remain based on APHA standards. [Pg.211]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

The oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, known as KA-od (ketone—alcohol, cyclohexanone—cyclohexanol cmde mixture), is used for most production (1). The earlier technology that used an oxidation catalyst such as cobalt naphthenate at 180—250°C at low conversions (2) has been improved. Cyclohexanol can be obtained through a boric acid-catalyzed cyclohexane oxidation at 140—180°C with up to 10% conversion (3). Unreacted cyclohexane is recycled and the product mixture is separated by vacuum distillation. The hydrogenation of phenol to a mixture of cyclohexanol and cyclohexanone is usually carried out at elevated temperatures and pressure ia either the Hquid (4) or ia the vapor phase (5) catalyzed by nickel. [Pg.425]

Cyclohexanone shows most of the typical reactions of aUphatic ketones. It reacts with hydroxjiamine, phenyUiydrazine, semicarbazide, Grignard reagents, hydrogen cyanide, sodium bisulfite, etc, to form the usual addition products, and it undergoes the various condensation reactions that are typical of ketones having cx-methylene groups. Reduction converts cyclohexanone to cyclohexanol or cyclohexane, and oxidation with nitric acid converts cyclohexanone almost quantitatively to adipic acid. [Pg.426]

The alternative route involves the air oxidation of cyclohexane and proceeds via the production of a mixture of cyclohexanol and cyclohexanone often known as KA oil. It was in the cyclohexane oxidation section of the caprolactam plant of Nypro Ltd that the huge explosion occurred at Flixborough, England in 1974. [Pg.483]

The plant was a stage in the production of nylon. It manufactured a mixture of cyclohexanone and cyclohexanol (known as KA, for the ketone/alcohol naixture) by oxidizing... [Pg.249]

The alkene mixture obtained on dehydration of 2,2-dimethyl-cyclohexanol contains appreciable amounts of 1,2-dimethylcyclohexene. Give a mechanistic explanation for the formation of this product. [Pg.210]

Likewise, thermolysis of 4-azidophenyl methyl ketone in methanol yields 5-acetyl-2-methoxy-3//-azepine (60%), compared to only an 8% yield from the photolytic reaction.78 119 The thermolysis of phenyl azide in refluxing cyclohexanol yields no 3H-azepine, only diphenyl-diazene (10%) and aniline (30%).74 In contrast, thermolysis of methyl 2-azidobenzoate in cyclohexanol furnishes a mixture of methyl 2-(cyclohexyloxy)-3//-azepine-3-carboxylate (20 % bp 127°C/0.1 Torr) and methyl 2-aminobenzoate (60%). Thermolysis of the azido ester in methanol under nitrogen in an autoclave at 150 C yields a 7 10 mixture (by 1HNMR spectroscopy) of the amino ester and methyl 2-methoxy-3//-azepine-3-carboxylate, which proved to be difficult to separate, and much tar.74 The acidic medium179 is probably responsible for the failure of methyl 2-azidoberjzoate to yield a 3//-azepine when thermolyzed in 3-methoxyphenol aniline (40%) is the major product.74... [Pg.147]

Therefore, CL and die depolymerized product from which CL is regenerated contain various impurities which are present in widely fluctuating amounts depending on the reclamation processes involved. In particular, the presence of cyclohexanone, cyclohexanone oxime, octahydrophenazine, aniline, and other easily oxidized compounds affects die permanganate number. Also volatile substances such as aniline, cyclohexylamine, cyclohexanol, cyclohexanone, nitrocy-clohexanone, and aliphatic amines may also be present in the CL.22... [Pg.540]

In one approach cyclohexane is autoxidized to a mixture of cyclohexanol and cyclohexanone in the presence of a Co or Mn naphthenate catalyst. This mixture is subsequently oxidized to adipic acid using nitric acid as the oxidant in the presence of a Cu Vv catalyst. An alternative method using dioxygen in combination with Co or Mn in HOAc gives lower selectivities to adipic acid (70% vs 95%). Alternatively, autoxidation in the presence of stoichiometric amounts of boric acid produces cyclohexanol as the major product, which is subsequently oxidized to adipic acid using HNO3 in the presence of Cu Vv. The latter step produces substantial amounts of N2O as a waste product. [Pg.299]

Phenols can be reduced by distillation over zinc dust or with HI and red phosphorus, but these methods are quite poor and are seldom feasible. Catalytic hydrogenation has also been used, but the corresponding cyclohexanol (see 15-14) is a side product. ... [Pg.867]


See other pages where Cyclohexanol production is mentioned: [Pg.16]    [Pg.18]    [Pg.101]    [Pg.207]    [Pg.186]    [Pg.223]    [Pg.154]    [Pg.52]    [Pg.352]    [Pg.16]    [Pg.18]    [Pg.101]    [Pg.207]    [Pg.186]    [Pg.223]    [Pg.154]    [Pg.52]    [Pg.352]    [Pg.16]    [Pg.260]    [Pg.210]    [Pg.493]    [Pg.240]    [Pg.208]    [Pg.209]    [Pg.523]    [Pg.292]    [Pg.426]    [Pg.426]    [Pg.707]    [Pg.2094]    [Pg.36]   


SEARCH



Cyclohexanol

© 2024 chempedia.info