Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanol, 2,3-dimethyl

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]

Nissema, A. Kokkonen, P. Excess molar enthalpies of (dimethyl sulfoxide + cyclohexanol), (dimethyl sulfoxide + toluene), (cyclohexanol + toluene), and (dimethyl sulfoxide + cyclohexanol + toluene) at the temperatures 303.15 K, 313.15 K, and 323.15 KJ. Chem. Thermodyn. 1991,23, 817-826... [Pg.1504]

In Problem 5 17 (Section 5 13) we saw that acid catalyzed dehydration of 2 2 dimethyl cyclohexanol afforded 1 2 dimethylcyclohexene To explain this product we must wnte a mecha nism for the reaction in which a methyl shift transforms a secondary carbocation to a tertiary one Another product of the dehydration of 2 2 dimethylcyclohexanol is isopropyhdenecyclopentane Wnte a mechanism to rationalize its formation... [Pg.229]

The alkene mixture obtained on dehydration of 2,2-dimethyl-cyclohexanol contains appreciable amounts of 1,2-dimethylcyclohexene. Give a mechanistic explanation for the formation of this product. [Pg.210]

In a 250-ml., three-necked, round-bottomed flask equipped with a mechanical stirrer, a gas inlet, and a stopper are placed 540 mg. (0.00346 mole) of a mixture of cis- and dimethyl sulfoxide (Note 3). While a slight positive pressure of argon is maintained... [Pg.99]

Aus 7-Oxo-octen-(l) entsteht bei -2,7 V 1,2-Dimethyl-cyclohexanol (50% d.Th.) in 1,4-Dioxan mit wenig Methanol und Tetraathylammoniumtosylat als Leitsalz1. [Pg.659]

In order to explore the possibility of tuning product stereochemistry by changing the experimental conditions, we carried out the reaction using different secondary alcohols as donor, namely di-isopropyl-carbinol (2,4-dimethyl-2-pentanol), 2-octanol, 3-octanol and cyclohexanol. [Pg.296]

Copper(II) sulfate Cumene hydroperoxide Cyanides Cyclohexanol Cyclohexanone Decaborane-14 Diazomethane 1,1-Dichloroethylene Dimethylformamide Hydroxylamine, magnesium Acids (inorganic or organic) Acids, water or steam, fluorine, magnesium, nitric acid and nitrates, nitrites Oxidants Hydrogen peroxide, nitric acid Dimethyl sulfoxide, ethers, halocarbons Alkali metals, calcium sulfate Air, chlorotrifluoroethylene, ozone, perchloryl fluoride Halocarbons, inorganic and organic nitrates, bromine, chromium(VI) oxide, aluminum trimethyl, phosphorus trioxide... [Pg.1477]

Other mediators which have been used in combination with diaphorase for the regeneration of NAD+ are riboflavin and Vitamin K3, which is 2,3-dimethyl-1,4-naphthoquinone. However, especially riboflavin is not stable enough for synthetic applications [40]. Better stability is exhibited by phenanthrolindiones as mediators. In combination with diaphorase, Ohshiro [41] showed the indirect electrochemical oxidation of cyclohexanol to cyclohexanone using the NAD+ dependent HLADH with a turnover frequency of two per hour. For an effective enzymatic synthesis, this turnover frequency, however, would be too small. In our own studies, we were able to accelerate the NAD(P)+ regeneration considerably by lowering the electron density within the... [Pg.99]

In a very special system, the photoelectrochemical regeneration of NAD(P)+ has been performed and applied to the oxidation of the model system cyclohexanol using the enzymes HLADH and TBADH. In this case, tris(2,2 -bipyridyl)ruthenium(II) is photochemically excited by visible light [43]. The excited Ru(II) complex acts as electron donor for AT,AT -dimethyl-4,4 -bipyridinium sulfate (MV2+) forming tris(2,2 -bipyridyl)ruthenium(III) and the MV-cation radical. The Ru(III) complex oxidizes NAD(P)H effectively thus... [Pg.101]

AI3-00040, see Cyclohexanol AI3-00041, see Cyclohexanone AI3-00045, see Diacetone alcohol AI3-00046, see Isophorone AI3-00050, see 1,4-Dichlorobenzene AI3-00052, see Trichloroethylene AI3-00053, see 1,2-Dichlorobenzene AI3-00054, see Acrylonitrile AI3-00072, see Hydroquinone AI3-00075, see p-Chloro-rrr-cresol AI3-00078, see 2,4-Dichlorophenol AI3-00085, see 1-Naphthylamine AI3-00100, see Nitroethane AI3-00105, see Anthracene AI3-00109, see 2-Nitropropane AI3-00111, see Nitromethane AI3-00118, see ferf-Butylbenzene AI3-00119, see Butylbenzene AI3-00121, see sec-Butylbenzene AI3-00124, see 4-Aminobiphenyl AI3-00128, see Acenaphthene AI3-00134, see Pentachlorophenol AI3-00137, see 2-Methylphenol AI3-00140, see Benzidine AI3-00142, see 2,4,6-Trichlorophenol AI3-00150, see 4-Methylphenol AI3-00154, see 4,6-Dinitro-o-cresol AI3-00262, see Dimethyl phthalate AI3-00278, see Naphthalene AI3-00283, see Di-rj-butyl phthalate AI3-00327, see Acetonitrile AI3-00329, see Diethyl phthalate AI3-00399, see Tributyl phosphate AI3-00404, see Ethyl acetate AI3-00405, see 1-Butanol AI3-00406, see Butyl acetate AI3-00407, see Ethyl formate AI3-00408, see Methyl formate AI3-00409, see Methanol AI3-00520, see Tri-ocresyl phosphate AI3-00576, see Isoamyl acetate AI3-00633, see Hexachloroethane AI3-00635, see 4-Nitrobiphenyl AI3-00698, see IV-Nitrosodiphenylamine AI3-00710, see p-Phenylenediamine AI3-00749, see Phenyl ether AI3-00790, see Phenanthrene AI3-00808, see Benzene AI3-00867, see Chrysene AI3-00987, see Thiram AI3-01021, see 4-Chlorophenyl phenyl ether AI3-01055, see 1.4-Dioxane AI3-01171, see Furfuryl alcohol AI3-01229, see 4-Methyl-2-pentanone AI3-01230, see 2-Heptanone AI3-01231, see Morpholine AI3-01236, see 2-Ethoxyethanol AI3-01238, see Acetone AI3-01239, see Nitrobenzene AI3-01240, see I idine AI3-01256, see Decahydronaphthalene AI3-01288, see ferf-Butyl alcohol AI3-01445, see Bis(2-chloroethoxy)methane AI3-01501, see 2,4-Toluene diisocyanate AI3-01506, see p,p -DDT AI3-01535, see 2,4-Dinitrophenol AI3-01537, see 2-Chloronaphthalene... [Pg.1457]

Catalytic hydrogenation transforms keto esters to hydroxy esters under very gentle conditions. In cyclic ketones products of different configuration may result. Ethyl 3,3-dimethylcyclohexanone-2-carboxylatC on hydrogenation over platinum oxide in acetic acid gave 96.3% yield of cis, and over Raney nickel in methanol gave 97% yield of trans ethyl 3,3-dimethyl-cyclohexanol-2-carboxylate, both at room temperature and atmospheric pressure [847]. [Pg.161]

Cyclohexanol, 4-terf-butyl- (8) Cyclohexanol, 4-( 1,1-dimethyl-ethyl)- (9) (98-52-2)... [Pg.126]

Chemicals and Standard Solutions. Cyclohexanone, cyclohexanol, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, phenol, 4-methylphenol, 4-chloro-phenol, 1,2,3,4-tetrahydroisoquinoline, 1-chlorohexane, 1-chlorododecane, and 1-chlorooctadecane were obtained from Aldrich. Acetone, tetrahydrofuran, ethyl acetate, toluene, dimethyl sulfoxide, and methanol were obtained from J. T. Baker. Distilled-in-glass isooctane, methylene chloride, ethyl ether, and pentane were obtained from Burdick and Jackson. Analytical standard kits from Analabs provided methyl ethyl ketone, isopropyl alcohol, ethanol, methyl isobutyl ketone, tetrachloroethylene, dodecane, dimethylformamide, 1,2-dichlorobenzene, 1-octanol, nitrobenzene, 2,4-dichlorophenol, and 2,5-dichlorophenol. All chemicals obtained from the vendors were of the highest purity available and were used without further purification. High-purity water... [Pg.356]

Heptanol, 2-methyl-3-hexanol, 2,4-dimethyl-3-pentanol, cyclo-pentanol, cyclohexanol, cyclo-heptanol, cyclooctanol, cis-and trans-2-methylcyclohexanol, cis- and trans-4-tert-butyl-cyclohexanol ai2o3 180-210 94... [Pg.283]

Small molecules may also form condis crystals, provided they posses suitable conformational isomers, It is of interest to note that several of the organic molecules normally identified as plastic crystals are probably better described as condis crystals. Their motion was, as already shown in Sect. 5.2.2, not the complete reorientation of the presumed rigid molecule, but rather an exchange between a limited number of conformational isomers. The examples treated in Sect. 5.2.2 are 2,3-dimethyl-butane, cyclohexanol and cyclohexane. [Pg.49]

With NBS in aqueous DMSO, cyclohexene gives racemic /ra/ -2-bromo-1 -cyclohexanol. This stereochemical result means that we have a Irans-addition. In the analogous bromohydrin formation from 3,3-dimethylcyclohexene, the analogous dimethylated 2-bromo-l-cyclohexanol is also produced /ra/rv-selectively as well as regioselectively (Figure 3.43). In the bromo-nium ion intermediate, the H20 molecule does not react at the hindered neopentyl center. This is as expected from the rules for SN2 reactivity (Section 2.4.4), and results in high regioselec-tivity. [Pg.145]

Under vigorous conditions (100°C and 1000 psig) in 25% aqueous sulfuric acid, the yield of cyclohexanol plus cyclohexanone from dimethyl-aniline was 90, 75, and 13% over 5% palladium-, 5% rhodium-, and 5% platinum-on-carbon, respectively (33). The decreasing yield parallels the decreasing tendency for migration. Reductive hydrolysis is favored by substitution on the nitrogen atom attributed in part to the relative difficulty of hydrogenating hindered enamines. [Pg.159]

Propose a Williamson synthesis of 3-butoxy-l,l-dimethylcyclohexane from 3,3-dimethyl-cyclohexanol and butan-l-ol. [Pg.636]

The easy hydrogenolysis of 1,3-cyclohexanedione over palladium catalyst has been applied to the preparation of 3,3-dimethylcyclohexanone from 5,5-dimethyl-1,3-cyclohexanedione (eq. 5.40).129 The reaction pathway outlined in Scheme 5.7 has been suggested for this transformation. 1,3-Cyclohexanedione was also hydro-genolyzed to give cyclohexanol in a 95% yield over copper-chromium oxide at 200°C and 17.7 MPa H2.130... [Pg.196]

The oxidized dimer, [Fe2(TPA)20(0Ac)]3+, 41, was shown to be an efficient catalyst for cyclohexane oxidation using tert-BuOOH as a source of oxygen (69). This catalyst reacts in CH3CN to yield cyclohexanol (9 equiv), cyclohexanone (11 equiv), and (tert-butylperoxy)cyclohexane (16 equiv) in 0.25 h at ambient temperatures and pressures under an inert atmosphere. The catalyst is not degraded during the catalytic reaction as determined by spectroscopic measurements and the fact that it can maintain its turnover efficiency with subsequent additions of oxidant. Solvent effects on product distribution were significant benzo-nitrile favored the hydroxylated products at the expense of (tert-butyl-peroxy)cyclohexane, whereas pyridine had the opposite effect. Addition of the two-electron oxidant trap, dimethyl sulfide, to the catalytic system completely suppressed the formation of cyclohexanol and cyclohexanone, but had no effect on the production of (tert-butylper-oxy)cyclohexane. These and other studies suggested that cyclohexanol and cyclohexanone must arise from an oxidant different from that responsible for the formation of (tert-butylperoxy)cyclohexane. Thus, two modes of tert-BuOOH decomposition were postulated a heterolytic... [Pg.123]


See other pages where Cyclohexanol, 2,3-dimethyl is mentioned: [Pg.64]    [Pg.92]    [Pg.74]    [Pg.300]    [Pg.279]    [Pg.299]    [Pg.109]    [Pg.1491]    [Pg.198]    [Pg.129]    [Pg.141]    [Pg.37]    [Pg.334]    [Pg.472]    [Pg.3411]    [Pg.158]    [Pg.170]    [Pg.403]    [Pg.220]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Cyclohexanol

© 2024 chempedia.info