Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions examples

Phosphites and 2,2-bis(trifluoromethyl)-5(2//)-oxazolone 71 react with elimination of carbon dioxide to give 2-aza-4-phospha-l,l-bis(trifluoromethyl)-l,3-butadiene 72 that can be used as a synthon for the previously unknown hydrogen-substituted nitrile ylide 72a in [3 + 2]-cycloaddition reactions. Examples of cycloadditions of 72a with dipolarophiles to give heterocyclic compounds 12t-ll are shown in Scheme 7.18. [Pg.147]

Cycloaddition reactions, characteristics, 10, 628 [4+2]-Cycloaddition reactions with (arene)tricarbonylchromium substituents, 5, 243 via silver catalysts, 9, 566-567 [4+3]-Cycloaddition reactions, examples, 10, 616 [4+4]-Cycloaddition reactions, characteristics, 10, 618 [4+2+l]-Cycloaddition reactions, characteristics, 10, 626 [4+2+2]-Cycloaddition reactions, characteristics, 10, 633 [4+4+l]-Cycloaddition reactions, characteristics, 10, 636 [5+2]-Cycloaddition reactions... [Pg.88]

Diels-Alder diene. This diene undergoes ready cycloaddition reactions. Examples ... [Pg.28]

As final examples, the intramolecular cyclopropane formation from cycloolefins with diazo groups (S.D. Burke, 1979), intramolecular cyclobutane formation by photochemical cycloaddition (p. 78, 297f., section 4.9), and intramolecular Diels-Alder reactions (p. 153f, 335ff.) are mentioned. The application of these three cycloaddition reactions has led to an enormous variety of exotic polycycles (E.J. Corey, 1967A). [Pg.94]

Thiatriazolin-5-imines undergo a variety of cycloaddition reactions with the elimination of Nt. 1,3-Dithiolylium-4-olates undergo cycloaddition reactions, e.g. as in Scheme 36 80AHC(27)i5l). Scheme 37 gives an example of cycloaddition in the oxathiazole series. [Pg.76]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

The stereochemistry of the 1,3-dipolar cycloaddition reaction is analogous to that of the Diels-Alder reaction and is a stereospecific syn addition. Diazomethane, for example, adds stereospecifically to the diesters 43 and 44 to yield the pyrazolines 45 and 46, respectively. [Pg.646]

The A-benzenesulfonyl imines of hexafluoroacetone readily react with nitrile oxides to give [3-1-2] adducts, apparently in a multistep reaction [151] (equation 36) Although only a few examples of [3-1-2] cycloaddition reactions of this type have been descnbed so far, most 1,3-dipoles should react in this way with predictable regiochemistry [5 146, ISO 151]... [Pg.860]

The first example of a cycloaddition reaction of a multiple bond to a diene was reported in 1917 Surprisingly, it was found that benzal azine adds to 2 equivalents of several unsaturated systems, when offered in excess, to yield bicyclie compounds. This reaction was named criss-cross" cycloaddition [190], Exploitation of the preparative potential of criss-cross cycloaddition began only in the early 1970s, when hexafluoroacetone azine became available on a larger scale [191,192] The study of this reaction proved to be an impetus tor the development of azine chemistry [183, 193]... [Pg.865]

The azomethine imines exhibit the typical cycloaddition behavior expected of 1,3-dipolar species [fSJ] Numerous [3+2] cycloaddition reactions have been performed [201 204] Tetracyanoethylene adds to azomethine imines across the nitnle function instead of the C=C double bond This reaction is a rare example of this type of periselectivity [208] (equation 47)... [Pg.868]

Dienamines undergo 1,4 cycloaddition with sulfenes as well as 1,2 cycloaddition. For example, l-(N,N-diethylamino)butadiene (111), when treated with sulfene (generated from methanesulfonyl chloride and triethyl-amine), produces 1,4 cycloadduct 116 in an 18 % yield and di-1,2-cycloadduct 117 in a 60 % yield (160). Cycloadduct 116 was shown not to be the precursor for 117 by treating 116 with excess sulfene and recovering the starting material unchanged (160). This reaction probably takes place by way of zwitterion 115, which can close in either a 1,4 or 3,4 manner to form cycloadducts 116 and 118, respectively. The 3,4 cycloaddition would then be followed by a 1,2 cycloaddition of a second mole of sulfene to form 117. Cycloadduct 117 must form in the 3,4 cycloaddition followed by a 1,2-cycloaddition sequence rather than the reverse sequence since sulfenes undergo cycloaddition only in the presence of an electron-rich olefinic center (159). Such a center is present as an enamine in 118, but it is not present in 119. [Pg.239]

There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

For the cycloaddition reaction in Scheme 4.6 it was found that 3-bromocam-phor, for example, can bind selectively to one enantiomer of the complex [12] and that if the reaction was performed in the presence of the racemic catalyst 8 and 3-bromocamphor, cis-3 was isolated with up to 80% ee compared to 95% ee for the reaction catalyzed by (J )-8b. [Pg.156]

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

The inverse electron-demand catalytic enantioselective cycloaddition reaction has not been investigated to any great extent. Tietze et al. published the first example of this class of reaction in 1992 - an intramolecular cycloaddition of heterodiene 42 catalyzed by a diacetone glucose derived-titanium(IV) Lewis acid 44 to give the cis product 43 in good yield and up to 88% ee (Scheme 4.31) [46]. [Pg.178]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

Accordingly, cyclic nitronates can be a useful synthetic equivalent of functionalized nitrile oxides, while reaction examples are quite limited. Thus, 2-isoxazoline N-oxide and 5,6-dihydro-4H-l,2-oxazine N-oxide, as five- and six-membered cyclic nitronates, were generated in-situ by dehydroiodination of 3-iodo-l-nitropropane and 4-iodo-l-nitrobutane with triethylamine and trapped with monosubstituted alkenes to give 5-substituted 3-(2-hydroxyethyl)isoxazolines and 2-phenylperhydro-l,2-oxazino[2,3-fe]isoxazole, respectively (Scheme 7.26) [72b]. Upon treatment with a catalytic amount of trifluoroacetic acid, the perhydro-l,2-oxazino[2,3-fe]isoxazole was quantitatively converted into the corresponding 2-isoxazoline. Since a method for catalyzed enantioselective nitrone cycloadditions was established and cyclic nitronates should behave like cyclic nitrones in reactivity, there would be a good chance to attain catalyzed enantioselective formation of 2-isoxazolines via nitronate cycloadditions. [Pg.272]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

The intramolecular variant leads to formation of more than one ring an interesting example is the formation of an intermediate in the synthesis of tetraasterane 16 by Musso and coworkers from 3,6-dihydrophthalic anhydride 15 by two subsequent [2 + 2] cycloaddition reactions, an intermolecular step followed by an intramolecular one ... [Pg.79]

The Diels-Alder reaction,is a cycloaddition reaction of a conjugated diene with a double or triple bond (the dienophile) it is one of the most important reactions in organic chemistry. For instance an electron-rich diene 1 reacts with an electron-poor dienophile 2 (e.g. an alkene bearing an electron-withdrawing substituent Z) to yield the unsaturated six-membered ring product 3. An illustrative example is the reaction of butadiene 1 with maleic anhydride 4 ... [Pg.89]

In contrast to those unreactive dienes that can t achieve an s-cis conformation, other dienes are fixed only in the correct s-cis geometry and are therefore highly reactive in the Diels-Alder cycloaddition reaction. 1,3-Cyclopentadiene, for example, is so reactive that it reacts with itself. At room temperature, 1,3-cycIopentadiene dimerizes. One molecule acts as diene and a second molecule acts as dienophile in a self Diels-Alder reaction. [Pg.497]

The Diels-Alder cycloaddition reaction (Section 14.4) is a pericvclic process that takes place between a diene (four tt electrons) and a dienophile (two tr electrons) to yield a cyclohexene product. Many thousands of examples of Diels-Alder reactions are known. They often take place easily at room temperature or slightly above, and they are stereospecific with respect to substituents. For example, room-temperature reaction between 1,3-butadiene and diethyl maleate (cis) yields exclusively the cis-disubstituted cyclohexene product. A similar reaction between 1,3-butadiene and diethyl fumarate (trans) yields exclusively the trans-disubstituted product. [Pg.1187]

The photochemical 2 t 2] cycloaddition reaction occurs smoothly and represents one of the best methods known for synthesizing cyclobutane rings. For example ... [Pg.1190]

Cycloaddition reactions are those in which two unsaturated molecules add together to yield a cyclic product. For example, Diels-AJder reaction between a diene (four tt electrons) and a dienophile (two tt electrons) yields a cyclohexene. Cycloadditions can take place either by suprafacial or antarafacial pathways. Suprafacial cycloaddition involves interaction between lobes on the same face of one component and on the same face of the second component. Antarafacial cycloaddition involves interaction between lobes on the same face of one component ancl on opposite faces of the other component. The reaction course in a specific case can be found by looking at the symmetry of the HOMO of one component and the lowest unoccupied molecular orbital (LUMO) of the other component. [Pg.1198]

Concerted (Section 30.1) A reaction that Lakes place in a single step without intermediates. For example, the Diels-Alder cycloaddition reaction is a concerted process. [Pg.1238]

The total synthesis of biotin (1) described in this chapter provides an impressive example of the intramolecular nitrone-olefin [3+2] cycloaddition reaction. Aiming for a practical process, the Hoff-mann-La Roche group utilized relatively simple and inexpensive starting materials, and ingeniously controlled the crucial [3+2] cycloaddition reaction to give only one stereoisomer by confining the cycloaddition precursor to a ten-membered ring. [Pg.291]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

Due to the presence of a heterocumulene unit, sulphines may be considered as a group of compounds which are able to undergo cycloaddition reactions. Reaction of sulphines with enamines and phosphorus ylides reported by Sheppard217 and Trippett218 and their coworkers may be considered formally as an example of [2 + 2] cycloaddition. In fact, Sheppard and Dickman217 obtained a 1 1 adduct from thiofluorenone S-oxide and 1-morpholinocyclohexene to which they assigned the dipolar sulphoxide structure 168. [Pg.275]

Since the first demonstration of a cycloaddition reaction of a, /f-unsaturated sulfones in 1938 by Alder and coworkers85, a variety of a, /3-unsaturated sulfones have been prepared and used as dienophiles. For example, when a mixture of p-tolyl vinyl sulfone and 2,3-dimethylbutadiene in benzene is heated at 145-150 °C for 10 h in a sealed tube, crystals of the cycloadduct (134) are obtained (equation 102). Other examples of this intermolecular cycloaddition reaction are given in Table 12. [Pg.791]

The intramolecular cycloaddition has proven to be the method of choice for the preparation of steroids. A diastereomeric mixture of 204, prepared from 191 and tosylate 203 has been cleanly converted to dl-estra-1,3,5(10)-trien-17-one (205) in 85% yield (equation 130). A second example of the intramolecular cycloaddition reaction is the formation of the cycloadduct (209), the key intermediate in a synthesis of the As-pidosperma alkaloid aspidospermine, upon heating 208 at 600 °C (equation 131)124. The sulfone 208 can be prepared by reaction of 3-ethyl-3,4,5,6-tetrahydropyridine (206) with the acid chloride 207. [Pg.806]


See other pages where Cycloaddition reactions examples is mentioned: [Pg.212]    [Pg.44]    [Pg.114]    [Pg.28]    [Pg.59]    [Pg.86]    [Pg.90]    [Pg.873]    [Pg.968]    [Pg.309]    [Pg.152]    [Pg.174]    [Pg.228]    [Pg.285]    [Pg.1198]    [Pg.154]    [Pg.662]    [Pg.357]    [Pg.437]   
See also in sourсe #XX -- [ Pg.535 ]




SEARCH



1.3- dipolar cycloaddition reactions examples

Cycloaddition examples

Cycloadditions example

Diels-Alder cycloaddition reaction biological example

Examples reaction

Pericyclic reactions cycloaddition, examples

Some examples of photochemical cycloaddition and electrocyclic reactions

© 2024 chempedia.info