Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pericyclic reactions cycloaddition, examples

The thermo- and photocycloaddition of alkenes will be discussed in Chapter 12, on pericyclic reactions. On the other hand, transition-metals have effectively catalyzed some synthetically useful cycloaddition reactions in water. For example, Lubineau and co-worker reported a [4 + 3] cycloaddition by reacting a,a-dibromo ketones with furan or cyclopen-tadiene mediated by iron or copper, or a-chloro ketones in the presence of triethylamine (Eq. 3.48).185... [Pg.79]

As pericyclic reactions are largely unaffected by polar reagents, solvent changes, radical initiators, etc., the only means of influencing them is thermally or photochemically. It is a significant feature of pericyclic reactions that these two influences often effect markedly different results, either in terms of whether a reaction can be induced to proceed readily (or at all), or in terms of the stereochemical course that it then follows. Thus the Diels-Alder reaction (cf. above), an example of a cycloaddition process, can normally be induced thermally but not photochemically, while the cycloaddition of two molecules of alkene, e.g. (4) to form a cyclobutane (5),... [Pg.341]

The combination of pericyclic transformations as cycloadditions, sigmatropic rearrangements, electrocydic reactions and ene reactions with each other, and also with non-pericyclic transformations, allows a very rapid increase in the complexity of products. As most of the pericyclic reactions run quite well under neutral or mild Lewis acid acidic conditions, many different set-ups are possible. The majority of the published pericyclic domino reactions deals with two successive cycloadditions, mostly as [4+2]/[4+2] combinations, but there are also [2+2], [2+5], [4+3] (Nazarov), [5+2], and [6+2] cycloadditions. Although there are many examples of the combination of hetero-Diels-Alder reactions with 1,3-dipolar cycloadditions (see Section 4.1), no examples could be found of a domino all-carbon-[4+2]/[3+2] cycloaddition. Co-catalyzed [2+2+2] cycloadditions will be discussed in Chapter 6. [Pg.280]

Since the number of domino processes which start with a Diels-Alder reaction is rather large, we have subdivided this section of the chapter according to the second step, which might be a second Diels-Alder reaction, a 1,3-dipolar cycloaddition, or a sigmatropic rearrangement. However, there are also several examples where the following reaction is not a pericyclic but rather is an aldol reaction these examples will be discussed under the term Mixed Transformations . [Pg.282]

In this section are described those domino reactions which start with a retro-pericy-clic reaction. This may be a retro-Diels-Alder reaction, a retro-l,3-dipolar cycloaddition, or a retro-ene reaction, which is then usually followed by a pericyclic reaction as the second step. However, a combination is also possible with another type of transformation as, for example, an aldol reaction. [Pg.330]

The interpretation of chemical reactivity in terms of molecular orbital symmetry. The central principle is that orbital symmetry is conserved in concerted reactions. An orbital must retain a certain symmetry element (for example, a reflection plane) during the course of a molecular reorganization in concerted reactions. It should be emphasized that orbital-symmetry rules (also referred to as Woodward-Hoffmann rules) apply only to concerted reactions. The rules are very useful in characterizing which types of reactions are likely to occur under thermal or photochemical conditions. Examples of reactions governed by orbital symmetry restrictions include cycloaddition reactions and pericyclic reactions. [Pg.524]

In a cycloaddition reaction, the two active n systems may approach each other in either of two orientations, for example, head to head or head to tail. If one combination dominates, the reaction is said to be regioselective. In the course of the reaction, 4 new saturated centers are formed. With maximum labeling, a total of 16 (=24) stereo-isomeric forms, consisting of 8 enantiomeric pairs of diastereomers if neither polyene is chiral, may be formed. In pericyclic reactions, the stereochemistry is determined by specifying the stereochemical mode in which each component reacts. Each of the two... [Pg.162]

The Diels-Alder cycloaddition is one example of a pericyclic reaction, which is a one-step reaction that proceeds through a cyclic transition state. Bond formation occurs at both ends of the diene system, and the Diels-Alder transition state involves a cyclic array of six carbons and six ir electrons. The diene must adopt the s-cis conformation in the transition state. [Pg.416]

Sigmatropic, electrocyclic, cycloaddition and cycloelimination, and cheletropic reactions have all been carried out with organosulfur compounds and often used for synthetic puiposes. A chapter of Block s monograph (203] is devoted to this topic, and most of the pericyclic processes include examples with sulfur compounds. The treatises by Barton and Ollis [482], Trost and Fleming [483] and Klamann [484] are guides to the more specialized literature. Some reviews deal with specific cases thiocarbonyl compounds [120] or cycloaddition reactions [485],... [Pg.193]

Many pericyclic reactions take place photochemically, that is, by irradiation with ultraviolet light. One example is the conversion of norbornadiene to quadricyclene, described in Section 13-3D. This reaction would have an unfavorable suprafacial [2 + 2] mechanism if it were attempted by simple heating. Furthermore, the thermodynamics favor ring opening rather than ring closure. However, quadricyclene can be isolated, even if it is highly strained, because to reopen the ring thermally involves the reverse of some unfavorable [2 + 2] cycloaddition mechanism. [Pg.1013]

The stereochemical results of eiectrocyclic and cycloaddition reactions carried out photochemically often are opposite to what is observed for corresponding thermal reactions. However, exceptions are known and the degree of stereospecificity is not always as high as in the thermal reactions. Further examples of photochemical pericyclic reactions are given in Section 28-2D. [Pg.1014]

The Woodward-Hoffmann rules also allow the prediction of the stereochemistry of pericyclic reactions. The Diels-Alder reaction is an example of (re4s + re2s) cycloaddition. The subscript s, meaning suprafacial, indicates that both elements of the addition take place on the same side of the re-system. Addition to opposite sides is termed antarafacial. The Woodward-Hoffmann rules apply only to concerted reactions and are derived from the symmetry properties of the orbitals involved in the transition state. These rules may be summarised as shown in Table 7.1. [Pg.1118]

Pericyclic reactions are commonly divided into three classes electrocyclic reactions, cycloaddition reactions, and sigmatropic rearrangements. An electrocyclic reaction forms a sigma bond between the end atoms of a series of conjugated pi bonds within a molecule. The 1,3-butadiene to cyclobutene conversion is an example, as is the similar reaction of 1,3,5-hexatriene to form 1,3-cyclohexadiene ... [Pg.965]

When ultraviolet light rather than heat is used to induce pericyclic reactions, our predictions generally must be reversed. For example, the [2 + 2] cycloaddition of two ethylenes is photochemically allowed. When a photon with the correct energy... [Pg.694]

Since Criegee s pioneering work in the late 1930s, the accepted mechanism for hydroxylation has been a concerted cycloaddition of alkene to the 0=0s=0 system.58 The development of the theory of pericyclic reactions in the 1960s and 1970s helped cement this proposal firmly in the minds of many workers.59 However, subsequent work has found few (if any) documented organometallic examples that followed the Woodward-Hoff-mann rules. [Pg.143]

One of the very rare examples of a combination of a radical with a pericyclic reaction - in this case a [4+2] Diels-Alder cycloaddition - is depicted in Scheme 3.83 [133]. The seqrtence, elaborated by Malacria and coworkers, is based on the premise that the vinyl radical 3-341 formed from the substrate 3-340 using tributyltin hydride exists mainly in the Z -form. This is reduced by a hydrogen atom to form a 1,3-diene, which can undergo an intramolecular Diels-Alder reaction via an exotransition state reaction (the chain lies away from diene). [Pg.275]

Electron transfer to or from a conjugated tr-system can also induce pericyclic reactions leading to skeletal rearrangements. A typical example is the Diels-Alder cycloaddition occurring after radical-cation formation from either the diene or the dienophile [295-297], The radical cation formation is in most cases achieved via photochemically induced electron transfer to an acceptor. The main structural aspect is that the cycloaddition product (s Scheme 9) contains a smaller n-system which is less efficient in charge stabilization than the starting material. Also, the original radical cations can enter uncontrollable polymerization reactions next to the desired cycloaddition, which feature limits the preparative scope of radical-type cycloaddition. [Pg.57]

Cycloaddition reaction (Sections 14.4, 30.6) A pericyclic reaction in which two reactants add together in a single step to >deld a cyclic product. I he Diels-Alder reaction between a diene and a dienophile to give a cyclohexene is an example. [Pg.1239]

Asymmetric Pericyclic Reactions. Several reports illustrate the utility of fra/is-2,5-dimethylpyirolidine as a chiral auxiliary in asymmetric Claisen-type rearrangements, [4 + 2], and [2 + 2] cycloaddition reactions. The enantioselective Claisen-type rearrangement of N,0-ketene acetals derived from tram-2,5-dimethylpyrrolidine has been studied. For example, the rearrangement of the iV.O-ketene acetal, formed in situ by the reaction of A-propionyl-fra/w-(25,55)-dimethylpyrrolidine with ( )-crotyl alcohol, affords the [3,3]-rearrangement product in 50% yield and 10 1 diastereoselectivity (eq 9). [Pg.288]

Very few pericyclic reactions of carbene complexes have been studied that are not in the cycloaddition class. The two examples that are known involve ene reactions and Claisen rearrangements. Both of these reactions have been recently studied and thus future developments in this area are anticipated. Ene reactions have been observed in the the reactions of alkynyl carbene complexes and enol ethers, where a competition can exist with [2 + 2] cycloadditions. Ene products are the major components firom the reaction of silyl enol ethers and [2 + 2] cycloadducts are normally the exclusive products with alkyl enol ethers (Section 9.2.2.1). As indicated in equation (7), methyl cyclohexenyl ether gives the [2 -t- 2] adduct (84a) as the major product along with a minor amount of the ene product (83a). The t-butyldimethylsilyl enol ether of cyclohexanone gives the ene product 9 1 over the [2 + 2] cycloadduct. The reason for this effect of silicon is not known at this time but if the reaction is stepwise, this result is one that would be expected on the basis of the silicon-stabilizing effect on the P-oxonium ion. [Pg.1075]

The ubiquitous and reversible formation of radical cations in photoelectrochemical transformations allows pericyclic reactions to take place upon photocatalytic activation since the barriers for pericyclic reactions are often lower in the singly oxidized product than in the neutral precursor. For example, ring openings on irradiated CdS suspensions are known in strained saturated hydrocarbons [176], and formal [2 -I- 2] cycloadditions have been described for phenyl vinyl ether [ 177] and A-vinyl carbazole [178]. The cyclization of nonconjugated dienes, such as norbomadiene, have also been reported [179]. A recent example involves a 1,3-sigmatropic shift [180]. [Pg.381]


See other pages where Pericyclic reactions cycloaddition, examples is mentioned: [Pg.163]    [Pg.306]    [Pg.473]    [Pg.255]    [Pg.374]    [Pg.318]    [Pg.44]    [Pg.421]    [Pg.361]    [Pg.373]    [Pg.743]    [Pg.291]    [Pg.241]    [Pg.128]    [Pg.203]    [Pg.743]    [Pg.317]    [Pg.215]    [Pg.263]    [Pg.187]    [Pg.3789]    [Pg.46]    [Pg.64]   
See also in sourсe #XX -- [ Pg.626 , Pg.627 , Pg.628 , Pg.629 , Pg.630 , Pg.631 , Pg.632 , Pg.633 , Pg.634 , Pg.635 , Pg.636 , Pg.637 , Pg.638 , Pg.639 , Pg.640 , Pg.641 , Pg.642 , Pg.643 ]




SEARCH



Cycloaddition examples

Cycloaddition reactions examples

Cycloadditions example

Examples reaction

Pericyclic

Pericyclic reactions

Pericyclic reactions cycloadditions

© 2024 chempedia.info