Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions applications

Ishikawa T, Shimizu Y, Kudoh T, Saito S (2003) Conversion of D-glucose to cychtol with hydroxymethyl substituent via intramolecular silyl nitronate cycloaddition reaction application to total synthesis of (+)-cyclophelhtol. Org Lett 5 3879-3882... [Pg.115]

Ishikawa, T., Shimizu, Y., Kudoh, T., Saito, S. Conversion of D-Glucose to Cyclitol with Hydroxymethyl Substituent via Intramolecular Siiyi Nitronate Cycloaddition Reaction Application to Total Synthesis of (+)-Cyclophellitol. Org. Lett. 2003, 5, 3879-3882. [Pg.599]

As final examples, the intramolecular cyclopropane formation from cycloolefins with diazo groups (S.D. Burke, 1979), intramolecular cyclobutane formation by photochemical cycloaddition (p. 78, 297f., section 4.9), and intramolecular Diels-Alder reactions (p. 153f, 335ff.) are mentioned. The application of these three cycloaddition reactions has led to an enormous variety of exotic polycycles (E.J. Corey, 1967A). [Pg.94]

Two types of cycloaddition reactions have found application for the Synthetic elaboration of indoles. One is Diels-Alder reactions of 2- and 3-vinylindoles which yield partially hydrogenated carbazoles. The second is cycloaddition reactions of 2,3-indolequinodimethane intermediates which also construct the carbazole framework. These reactions arc discussed in the following sections. [Pg.159]

Oxepin, 4-ethoxycarbonyl-2,3,6,7-tetrahydro-synthesis, 7, 578 Oxepin, 2-methyl-enthalpy of isomerization, 7, 555 Oxepin, 2,3,4,5-tetrahydro-reduction, 7, 563 synthesis, 7, 578 Oxepin, 2,3,4,7-tetrahydro-synthesis, 7, 578 Oxepin, 2,3,6,7-tetrahydro-oxidation, 7, 563 reduction, 7, 563 Oxepin-2,6-dicarboxylic acid stability, 7, 565 Oxepinium ions synthesis, 7, 559 Oxepins, 7, 547-592 antiaromaticity, 4, 535 applications, 7, 590-591 aromatization, 7, 566 bond lengths and angles, 7, 550, 551 cycloaddition reactions, 7, 27, 569 deoxygenation, 7, 570 dipole moment, 7, 553 disubstituted synthesis, 7, 584... [Pg.732]

Thieno[3,4-d][ 1,2,3]triazole, tetramethyl-synthesis, 6, 1015 Thieno[3,4-c][ 1,2,3]triazoles synthesis, 6, 1042 Thieno[3,4-d][ 1,2,3]triazoles reactions, 6, 1036 synthesis, 6, 1044 Thienyl radicals generation, 4, 832 Thiepane, 2-acetoxy-synthesis, 7, 574 Thiepane, 2-chloro-nucleophilic substitution, 7, 573 synthesis, 7, 574 Thiepane, 2-methyl-synthesis, 7, 573 Thiepane, 2-phenyl-synthesis, 7, 573 Thiepane, 3,3,6,6-tetramethyl-cycloaddition reactions, 7, 574 Thiepanes, 7, 547-592 applications, 7, 591... [Pg.882]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

Cycloaddition reactions also have important applications for acyclic chalcogen-nitrogen species. Extensive studies have been carried out on the cycloaddition chemistry of [NSa]" which, unlike [NOa]", undergoes quantitative, cycloaddition reactions with unsaturated molecules such as alkenes, alkynes and nitriles (Section 5.3.2). ° The frontier orbital interactions involved in the cycloaddition of [NSa]" and alkynes are illustrated in Fig. 4.13. The HOMO ( Tn) and LUMO ( r ) of the sulfur-nitrogen species are of the correct symmetry to interact with the LUMO (tt ) and HOMO (tt) of a typical alkyne, respectively. Although both... [Pg.70]

The intramolecular cycloaddition reaction of enamides has been exploited in alkaloid synthesis (81JOC3763). One successful application is provided by the total synthesis of the fused indolizidine 5 from 4 as a 1 1 mixture of epimers in 43% total yield 5 is a key intermediate in aspidosperma alkaloid synthesis (79JA3294). [Pg.271]

Asymmetric bias generated by protected vicinal diol controller and its application to asymmetric nitrone-olefin cycloaddition reactions 98YGK86. [Pg.253]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

A rather unexpected discovery was made in connection to these investigations [49]. When the 1,3-dipolar cycloaddition reaction of la with 19b mediated by catalyst 20 (X=I) was performed in the absence of MS 4 A a remarkable reversal of enantioselectivity was observed as the opposite enantiomer of ench-21 was obtained (Table 6.1, entries 1 and 2). This had not been observed for enantioselective catalytic reactions before and the role of molecular sieves cannot simply be ascribed to the removal of water by the MS, since the application of MS 4 A that were presaturated with water, also induced the reversal of enantioselectivity (Table 6.1, entries 3 and 4). Recently, Desimoni et al. also found that in addition to the presence of MS in the MgX2-Ph-BOX-catalyzed 1,3-dipolar addition shown in Scheme 6.17, the counter-ion for the magnesium catalyst also strongly affect the absolute stereoselectivity of the reac-... [Pg.224]

Tab. 6.2 Application of TiX2 between la and 19a TADDOLate as catalyst for the 1,3-dipolar cycloaddition reaction... Tab. 6.2 Application of TiX2 between la and 19a TADDOLate as catalyst for the 1,3-dipolar cycloaddition reaction...
The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

In 1997 the application of two different chiral ytterbium catalysts, 55 and 56 for the 1,3-dipolar cycloaddition reaction was reported almost simultaneously by two independent research groups [82, 83], In both works it was observed that the achiral Yb(OTf)3 and Sc(OTf)3 salts catalyze the 1,3-dipolar cycloaddition between nitrones 1 and alkenoyloxazolidinones 19 with endo selectivity. In the first study 20 mol% of the Yb(OTf)2-pyridine-bisoxazoline complex 55 was applied as the catalyst for reactions of a number of derivatives of 1 and 19. The reactions led to endo-selective 1,3-dipolar cycloadditions giving products with enantioselectivities of up to 73% ee (Scheme 6.38) [82]. In the other report Kobayashi et al. described a... [Pg.239]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

The development of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions is probably going to continue during the next decade. High level of control of the reactions of nitrones has been obtained, and for these reactions one of the next challenges is to explore new substrates that are designed for application in synthesis. The development of metal-catalyzed asymmetric reactions of the other... [Pg.245]

The total synthesis of ( )-estrone [( )-1 ] by Vollhardt et al. is a novel extension of transition metal mediated alkyne cyclotrimeriza-tion technology. This remarkable total synthesis is achieved in only five steps from 2-methylcyclopentenone (19) in an overall yield of 22%. The most striking maneuver in this synthesis is, of course, the construction of tetracycle 13 from the comparatively simple diyne 16 by combining cobalt-mediated and ort/io-quinodimethane cycloaddition reactions. This achievement bodes well for future applications of this chemistry to the total synthesis of other natural products. [Pg.165]

A number of comprehensive reviews1 6on the reaction of A-acyliminium ions, including detailed accounts of their application in alkaloid synthesis7- 8, have appeared. This section does not deal with [4 + 2] cycloaddition reactions of A -acyliminium ions these will be discussed in Section D.1.6.1.1. [Pg.803]


See other pages where Cycloaddition reactions applications is mentioned: [Pg.278]    [Pg.278]    [Pg.53]    [Pg.53]    [Pg.521]    [Pg.632]    [Pg.670]    [Pg.673]    [Pg.735]    [Pg.769]    [Pg.836]    [Pg.842]    [Pg.882]    [Pg.643]    [Pg.537]    [Pg.309]    [Pg.168]    [Pg.210]    [Pg.211]    [Pg.212]    [Pg.227]    [Pg.228]    [Pg.242]    [Pg.244]    [Pg.285]    [Pg.322]    [Pg.71]    [Pg.456]   
See also in sourсe #XX -- [ Pg.154 , Pg.158 ]

See also in sourсe #XX -- [ Pg.154 , Pg.155 , Pg.156 , Pg.157 ]




SEARCH



Application of Hammett equation 2 + 2)-cycloaddition and cycloreversion reactions

Applications of -Cycloaddition Reactions

Methods and Applications of Cycloaddition Reactions in Organic Syntheses, First Edition. Edited by Nagatoshi Nishiwaki

Reaction application

© 2024 chempedia.info