Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic Voltammetry CV

Potential-time curves in cyclic voltammetry at two potential scan rates, 0.005 and 0.02 V.s, respectively. [Pg.283]

As discussed later, this potential scan rate can be used to study electrode kinetics. For example, if the potential scan rate is too fast, the electrochemical reactions on the electrode may not be able follow the electrode potential change, which willbe reflected on the CVs (current-potential curves) recorded as a function of potential scan rate. From this potential scan rate dependence, the reaction kinetics can be deduced qualitatively and quantitatively. [Pg.283]

Cyclic voltammograms of 5 wt% Fe-N /C coated on glassy carbon electrode surface, recorded in Nj-purged 0.5 M H2SO4 solution. Fe-N /C loading = 150 jig-cnr. Potential scan rate = 50 mV/s. Source Zhang, L. and J. Zhang. 2011. NRC unpublished data. With permission.) [Pg.284]


Using dilatometry in parallel with cyclic voltammetry (CV) measurements in lmolL 1 LiC104 EC-l,2-dimethoxy-ethane (DME), Besenhard et al. [87] found that over the voltage range of about 0.8-0.3 V (vs. Li/Li+), the HOPG crystal expands by up to 150 percent. Some of this expansion seems to be reversible, as up to 50 percent contraction due to partial deintercalation of solvated lithium cations was observed on the return step of the CV. It was concluded [87] that film formation occurs via chemical reduction of a solvated graphite intercalation compound (GIC) and that the permselective film (SEI) in fact penetrates into the bulk of the HOPG. It is important to repeat the tests conducted by Besenhard et al. [87] in other EC-based electrolytes in order to determine the severity of this phenomenon. [Pg.435]

According to experimental data,208,209 the SNIFTIR technique can be used to probe the electrical properties of the electrical double layer even in more concentrated solutions where cyclic voltammetry (cv), impedance, chronocoulometry, and other techniques are not applicable. Iwasita and Xia210 have used FTIR reflection-adsorption spectra to identify the potential at which the orientation of water molecules changes from hydrogen down to oxygen down. [Pg.41]

Not only the absorption behaviour, but also all the physical properties of derivatives (32) are related to the nature of the 2,5-substitution pattern. For example, a blue-green emission is observed for di(2-pyridyl)phosphole (32b) whereas the emission of di(2-thienyl)phosphole (32a) is red-shifted (AAj,nj= 35 nm) [36]. Likewise, cyclic voltammetry (CV) revealed that derivative (32a), featuring electron-rich thienyl substituents, is more easily oxidised than compound (32b), which possesses electron-deficient pyridyl substituents [36]. [Pg.138]

In this chapter, the voltammetric study of local anesthetics (procaine and related compounds) [14—16], antihistamines (doxylamine and related compounds) [17,22], and uncouplers (2,4-dinitrophenol and related compounds) [18] at nitrobenzene (NB]Uwater (W) and 1,2-dichloroethane (DCE)-water (W) interfaces is discussed. Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep voltammetry or cyclic voltammetry (CV) have been employed. Theoretical equations of the half-wave potential vs. pH diagram are derived and applied to interpret the midpoint potential or half-wave potential vs. pH plots to evaluate physicochemical properties, including the partition coefficients and dissociation constants of the drugs. Voltammetric study of the kinetics of protonation of base (procaine) in aqueous solution is also discussed. Finally, application to structure-activity relationship and mode of action study will be discussed briefly. [Pg.682]

Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep or cyclic voltammetry (CV) were employed for investigating drugs at the NB/W or DCE/W interface. A thin O-layer cell [15,16,23] was used to realize the partition equilibrium of neutral species (that is, B) at the O/W interface initially at t = 0 within a reasonably short time. All measurements were carried out at 25°C. Experimental details should be consulted in the references cited. [Pg.687]

Centrifugal partition chromatography (CPC) has been used to characterize the partitioning behavior of hydrophilic molecules, where log D values as low as —3 can be obtained [371,377-379]. It is not as popular a method as it used to be, apparently due to instrumental challenges. Cyclic voltammetry (CV) has become the new method used to get access to very low log D values, with partition coefficients reported as low as —9.8 [261,269,362]. [Pg.55]

Electrochemical techniques have been utilized for many years to study metal corrosion. Two of these techniques, linear polarization (LP) and cyclic voltammetry (CV), complement each other, LP providing corrosion rates under conditions where the surface is minimally altered and CV furnishing information about the corrosion mechanism. With the advent of impedance spectroscopy (IS), both kinds of information can be gleaned simultaneously and more rapidly, while leaving the surface almost intact. In this paper, we discuss the application of IS to the study of rapid steel corrosion and describe a study we undertook to elucidate the roles played by adsorption and film formation in the inhibition mechanisms of the above-named compounds. For comparison, we also investigated two quaternary nitrogen salts, which appear to adsorb electrostatically and presumably do not form macroscopic films (8). [Pg.636]

Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE... Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE...
The heterogeneous rates of electron transfer in eq 7 were measured by two independent electrochemical methods cyclic voltammetry (CV) and convolutive potential sweep voltammetry (CPSV). The utility of the cyclic voltammetric method stems from its simplicity, while that of the CPSV method derives from its rigor. [Pg.120]

Cyclic voltammetry (CV) curves were recorded on a Kipp and Zonen BD91 X-Y recorder and the current-time transients resulting from the potential step experiments were recorded digitally. The apparatus used included a PAR Model 173 potentiostat and an IBM XT computer... [Pg.485]

The two cyclic voltammograms shown in Fig. 13 of [Scm(LBu2)] (b) and Scln(LMe-)] (a) show an important feature. Whereas the cyclic voltammetry (CV) of the former compound displays three reversible one-electron transfer waves, the latter shows only two irreversible oxidation peaks. Thus methyl groups in the ortho- and para-positions of the phenolates are not sufficient to effectively quench side reactions of the generated phenoxyls. In contrast, two tertiary butyl groups in the ortho- and para-positions stabilize the successively formed phenoxyls, Eq. (5)... [Pg.166]

The most popular voltammetric technique is probably cyclic voltammetry (CV), partly because of its early development in theory and the availability of the corresponding commercial equipment. In this technique, the electrode potential is first scanned linearly with time from a starting potential, where no reaction occurs, passing E°, towards another potential, and then reversed back to the starting potential. In this case, the time variable can be conveniently represented by the scan rate, v. [Pg.85]

The observed small and interconnected pores are expected to perform as electrodes of supercapacitors. Cyclic voltammetry (CV) and galvanostatic charge/discharge curves were used to characterize the capacitive properties the resulting data in simple acid (1 mol L 1 II2S0/() are shown in Fig. 7.11. [Pg.216]

Fig. 11.9 Electrochemical properties of supercapacitors using the bare NiO and NiO/CNT (10 %) composite electrodes. The cyclic voltammetry(CV) behavior of (a) the bare NiO electrodes and (b) the NiO/CNT (10%) composite electrodes in 2M KOH aqueous solution (sweep rate, 10 mV/s) (reprinted with permission from Y. Lee etal., Synthetic Metals, 150, 2005,153-157). Fig. 11.9 Electrochemical properties of supercapacitors using the bare NiO and NiO/CNT (10 %) composite electrodes. The cyclic voltammetry(CV) behavior of (a) the bare NiO electrodes and (b) the NiO/CNT (10%) composite electrodes in 2M KOH aqueous solution (sweep rate, 10 mV/s) (reprinted with permission from Y. Lee etal., Synthetic Metals, 150, 2005,153-157).
Abstract This chapter first explains the natural flotability of some minerals in the aspect of the crystal structure and demonstates the collectorless flotaiton of some minerals and its dependence on the h and pH of pulp. And then the surface oxidation is analysed eletrochemically and the relations of E to the composition of the solutions are calculated in accordance with Nemst Equation. The E h-pH diagrams of several minerals are obtained. Thereafter, electrochemical determination such as linear potential sweep voltammetry (LPSV) and cyclic voltammetry (CV) and surface analysis of surface oxidation applied to the sulphide minerals are introduced. And recent researches have proved that elemental sulfur is the main hydrophobic entity which causes the collectorless flotability and also revealed the relation of the amount of sulfur formed on the mineral surfaces to the recoveries of minerals, which is always that the higher the concentration of surface sulphur, the quicker the collectorless flotation rate and thus the higher the recovery. [Pg.20]

Many investigators have used different techniques to study the electrochemical behavior of different sulphide mineral electrodes in solutions of different compositions. Linear potential sweep voltammetry (LPSV), and cyclic voltammetry (CV) have been perhaps, used most extensively and applied successfully to the investigation of reactions of sulphide minerals with aqueous systems. These techniques have provided valuable information on the extent of oxidation as a function of potential for various solution conditions and have allowed the identity of the surface products to be deduced. [Pg.41]

As is well known in the field of electrochemistry in general, electrode kinetics may be conveniently examined by cyclic voltammetry (CV) and by frequency response analysis (ac impedance). The kinetics of the various polymer electrodes considered so far in this chapter will be discussed in terms of results obtained by these two experimental techniques. [Pg.247]

The monotonic increase of immobilized material vith the number of deposition cycles in the LbL technique is vhat allo vs control over film thickness on the nanometric scale. Eilm growth in LbL has been very well characterized by several complementary experimental techniques such as UV-visible spectroscopy [66, 67], quartz crystal microbalance (QCM) [68-70], X-ray [63] and neutron reflectometry [3], Fourier transform infrared spectroscopy (ETIR) [71], ellipsometry [68-70], cyclic voltammetry (CV) [67, 72], electrochemical impedance spectroscopy (EIS) [73], -potential [74] and so on. The complement of these techniques can be appreciated, for example, in the integrated charge in cyclic voltammetry experiments or the redox capacitance in EIS for redox PEMs The charge or redox capacitance is not necessarily that expected for the complete oxidation/reduction of all the redox-active groups that can be estimated by other techniques because of the experimental timescale and charge-transport limitations. [Pg.64]

The cycle life of a rechargeable battery depends on the long-term reversibility of cell chemistries, and the electrochemical stability of the electrolyte plays a crucial role in maintaining this reversibility. In electrochemistry, there have been numerous techniques developed to measure and quantify the electrochemical stability of electrolyte components, and the most frequently used technique is cyclic voltammetry (CV) in its many variations. [Pg.83]

The Fe2S2 complex derived from the 20-peptide exhibits a visible spectrum typical of plant-type 2-Fe proteins (10). (See Figure 4.) But at least two isomeric 2-Fe species are detect by the cyclic voltammetry (CV) and also by the differential-pulse polarography in DMF. One isomer has an E1/2 at -0.64 V (SCE), which is very similar to that of the native protein, and this complex presumably adopts a structure... [Pg.294]

Another transient aminoxyl radical has been generated , and employed in H-abstraction reactivity determinations" . Precursor 1-hydroxybenzotriazole (HBT, Table 2) has been oxidized by cyclic voltammetry (CV) to the corresponding >N—O species, dubbed BTNO (Scheme 9). A redox potential comparable to that of the HPI —PINO oxidation, i.e. E° 1.08 V/NHE, has been obtained in 0.01 M sodium acetate buffered solution at pH 4.7, containing 4% MeCN". Oxidation of HBT by either Pb(OAc)4 in AcOH, or cerium(IV) ammonium nitrate (CAN E° 1.35 V/NHE) in MeCN, has been monitored by spectrophotometry , providing a broad UV-Vis absorption band with A-max at 474 nm and e = 1840 M cm. As in the case of PINO from HPI, the absorption spectrum of aminoxyl radical BTNO is not stable, but decays faster (half-life of 110 s at [HBT] = 0.5 mM) than that of PINO . An EPR spectrum consistent with the structure of BTNO was obtained from equimolar amounts of CAN and HBT in MeCN solution . Finally, laser flash photolysis (LFP) of an Ar-saturated MeCN solution of dicumyl peroxide and HBT at 355 nm gave rise to a species whose absorption spectrum, recorded 1.4 ms after the laser pulse, had the same absorption maximum (ca 474 nm) of the spectrum recorded by conventional spectrophotometry (Scheme 9)59- 54... [Pg.718]


See other pages where Cyclic Voltammetry CV is mentioned: [Pg.299]    [Pg.473]    [Pg.108]    [Pg.312]    [Pg.148]    [Pg.670]    [Pg.8]    [Pg.61]    [Pg.565]    [Pg.779]    [Pg.343]    [Pg.51]    [Pg.630]    [Pg.679]    [Pg.73]    [Pg.77]    [Pg.231]    [Pg.6]    [Pg.117]    [Pg.518]    [Pg.196]    [Pg.200]    [Pg.311]    [Pg.74]   


SEARCH



CV—See Cyclic voltammetry

Cyclic Voltammetry (CV) Test

Cyclic voltammetry

Cyclic voltammetry (CV) at semiconductor electrodes

© 2024 chempedia.info