Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Current polarizable

Current polarizable models can be classified into three major categories (1) induced dipole, [2] fluctuating charge, and [3] classical Drude oscillator (or Shell models]. [Pg.193]

Conformational Adjustments The conformations of protein and ligand in the free state may differ from those in the complex. The conformation in the complex may be different from the most stable conformation in solution, and/or a broader range of conformations may be sampled in solution than in the complex. In the former case, the required adjustment raises the energy, in the latter it lowers the entropy in either case this effect favors the dissociated state (although exceptional instances in which the flexibility increases as a result of complex formation seem possible). With current models based on two-body potentials (but not with force fields based on polarizable atoms, currently under development), separate intra-molecular energies of protein and ligand in the complex are, in fact, definable. However, it is impossible to assign separate entropies to the two parts of the complex. [Pg.133]

In addition, the potential of the electrode can be varied, resulting in a change in the stmcture of the interface. If no current is passed when the potential of the electrode changes, the electrode is called an ideally polarizable electrode, and can be described using thermodynamics. [Pg.64]

Even in the absence of Faradaic current, ie, in the case of an ideally polarizable electrode, changing the potential of the electrode causes a transient current to flow, charging the double layer. The metal may have an excess charge near its surface to balance the charge of the specifically adsorbed ions. These two planes of charge separated by a small distance are analogous to a capacitor. Thus the electrode is analogous to a double-layer capacitance in parallel with a kinetic resistance. [Pg.64]

Galvanic anodes should exhibit as low a polarizability as possible. The extent of their polarization is important in practice for their current output. A further anode... [Pg.179]

Their polarizability increases in saline muds and their current efficiency markedly decreases e.g., for the alloy galvalum III in Table 6-3, from 2550 A h kg to 1650Ahkg- . [Pg.191]

Measuring electrodes for impressed current protection are robust reference electrodes (see Section 3.2 and Table 3-1) which are permanently exposed to seawater and remain unpolarized when a small control current is taken. The otherwise usual silver-silver chloride and calomel reference electrodes are used only for checking (see Section 16.7). All reference electrodes with electrolytes and diaphragms are unsuitable as long-term electrodes for potential-controlled rectifiers. Only metal-medium electrodes which have a sufficiently constant potential can be considered as measuring electrodes. The silver-silver chloride electrode has a potential that depends on the chloride content of the water [see Eq. (2-29)]. This potential deviation can usually be tolerated [3]. The most reliable electrodes are those of pure zinc [3]. They have a constant rest potential, are slightly polarizable and in case of film formation can be regenerated by an anodic current pulse. They last at least 5 years. [Pg.408]

In the first example of applications of the theory in this chapter, we made a point with respect to the polarizability of molecules and showed how the problem could have been handled by the RISM-SCF/MCSCF theory. However, the current level of our method has a serious limitation in this respect. The method can handle the polarizability of molecules in neat liquids or that of a single molecule in solution in a reasonable manner. But in order to be able to treat the polarizability of both solute and solvent molecules in solution, considerable generalization of the RISM side of the theory is required. When solvent molecules are situated within the influence of solute molecules, the solvent molecules are polarized differently depending on the distance from the solute molecules, and the solvent can no longer be neat. Therefore, the polarizable model developed for neat liquids is not valid. In such a case, solvent-solvent PCF should be treated under the solute... [Pg.437]

Electrochemical impedance spectroscopy leads to information on surface states and representative circuits of electrode/electrolyte interfaces. Here, the measurement technique involves potential modulation and the detection of phase shifts with respect to the generated current. The driving force in a microwave measurement is the microwave power, which is proportional to E2 (E = electrical microwave field). Therefore, for a microwave impedance measurement, the microwave power P has to be modulated to observe a phase shift with respect to the flux, the transmitted or reflected microwave power APIP. Phase-sensitive microwave conductivity (impedance) measurements, again provided that a reliable theory is available for combining them with an electrochemical impedance measurement, should lead to information on the kinetics of surface states and defects and the polarizability of surface states, and may lead to more reliable information on real representative circuits of electrodes. We suspect that representative electrical circuits for electrode/electrolyte interfaces may become directly determinable by combining phase-sensitive electrical and microwave conductivity measurements. However, up to now, in this early stage of development of microwave electrochemistry, only comparatively simple measurements can be evaluated. [Pg.461]

The extent to which anode polarization affects the catalytic properties of the Ni surface for the methane-steam reforming reaction via NEMCA is of considerable practical interest. In a recent investigation62 a 70 wt% Ni-YSZ cermet was used at temperatures 800° to 900°C with low steam to methane ratios, i.e., 0.2 to 0.35. At 900°C the anode characteristics were i<>=0.2 mA/cm2, Oa=2 and ac=1.5. Under these conditions spontaneously generated currents were of the order of 60 mA/cm2 and catalyst overpotentials were as high as 250 mV. It was found that the rate of CH4 consumption due to the reforming reaction increases with increasing catalyst potential, i.e., the reaction exhibits overall electrophobic NEMCA behaviour with a 0.13. Measured A and p values were of the order of 12 and 2 respectively.62 These results show that NEMCA can play an important role in anode performance even when the anode-solid electrolyte interface is non-polarizable (high Io values) as is the case in fuel cell applications. [Pg.410]

When an electrode is ideally polarizable, aU of the current through it is nonfaradaic (charging current) and depends on the properties of the electrode surface ... [Pg.172]

Heterogeneous ET reactions at polarizable liquid-liquid interfaces have been mainly approached from current potential relationships. In this respect, a rather important issue is to minimize the contribution of ion-transfer reactions to the current responses associated with the ET step. This requirement has been recognized by several authors [43,62,67-72]. Firstly, reactants and products should remain in their respective phases within the potential range where the ET process takes place. In addition to redox stability, the supporting electrolytes should also provide an appropriate potential window for the redox reaction. According to Eqs. (2) and (3), the redox potentials of the species involved in the ET should match in a way that the formal electron-transfer potential occurs within the potential window established by the transfer of the ionic species present at the liquid-liquid junction. The results shown in Figs. 1 and 2 provide an example of voltammetric ET responses when the above conditions are fulfilled. A difference of approximately 150 mV is observed between Ao et A" (.+. ... [Pg.199]

Nonfaradaic components associated with the uncompensated resistance between reference electrodes (7 ) and the double layer capacitance (Qi) can be accurately determined by AC impedance measurements. In this technique, a small AC potential perturbation is superimposed to the DC bias, and the resulting AC current is measured as a function of the frequency of modulation. The simplest circuit considered for a polarizable... [Pg.203]

Within the potential range where Ru(bpy)3 remains in the aqueous phase, photocurrent responses are clearly observed with a slow rising time of the order of 10 s as shown in Fig. 14(a). According to the convention employed by these authors, positive currents correspond to the transfer of a negative charge from water to DCE. No photoresponses were observed in the absence of either the dye in the aqueous phase or TCNQ in DCE. Further analysis of the interfacial behavior of the product TCNQ revealed that the ion transfer occurred outside of the polarizable window [cf. Fig. 14(d)], confirming that these photoresponses are not affected by coupled ion-transfer processes. An earlier report also showed photoeffects for the photoreduction of the viologen under similar conditions [131]. [Pg.216]

FIG. 14 On-off photocurrent responses (a) associated with the reaction in Eq. (41) at Ao0 = —0.225 V. In this figure, positive currents correspond to the transfer of a negative charge from water to DCE. The potential dependence of the photocurrent (b) was obtained under chopped illumination and lock-in detection. The maximum in the photocurrent-potential curve contrasts with the small changes in the dark current shown in (c). These responses are developed within the polarizable window described in (d). (From Ref. 49. Reproduced by permission of The Royal Society of Chemistry.)... [Pg.217]

In order to obtain a definite breakthrough of current across an electrode, a potential in excess of its equilibrium potential must be applied any such excess potential is called an overpotential. If it concerns an ideal polarizable electrode, i.e., an electrode whose surface acts as an ideal catalyst in the electrolytic process, then the overpotential can be considered merely as a diffusion overpotential (nD) and yields (cf., Section 3.1) a real diffusion current. Often, however, the electrode surface is not ideal, which means that the purely chemical reaction concerned has a free enthalpy barrier especially at low current density, where the ion diffusion control of the electrolytic conversion becomes less pronounced, the thermal activation energy (AG°) plays an appreciable role, so that, once the activated complex is reached at the maximum of the enthalpy barrier, only a fraction a (the transfer coefficient) of the electrical energy difference nF(E ml - E ) = nFtjt is used for conversion. [Pg.126]

If a cell is to be used as a potential standard, then it must be prepared as simply as possible from chemicals readily available in the required purity and, in the absence of current passage, it must have a known, defined, constant EMF that is practically independent of temperature. In this case the efficiency, power, etc., required for cells used as electrochemical power sources is of no importance. The electrodes of the standard cell must not be polarizable by the currents passing through them when the measuring circuit is not exactly compensated. [Pg.202]


See other pages where Current polarizable is mentioned: [Pg.52]    [Pg.52]    [Pg.208]    [Pg.184]    [Pg.188]    [Pg.207]    [Pg.234]    [Pg.34]    [Pg.451]    [Pg.439]    [Pg.40]    [Pg.344]    [Pg.228]    [Pg.63]    [Pg.259]    [Pg.100]    [Pg.124]    [Pg.552]    [Pg.269]    [Pg.31]    [Pg.174]    [Pg.178]    [Pg.278]    [Pg.298]    [Pg.8]    [Pg.230]    [Pg.400]    [Pg.740]    [Pg.80]    [Pg.95]    [Pg.129]    [Pg.146]    [Pg.307]    [Pg.213]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



© 2024 chempedia.info