Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific adsorbed ions

The net charge at the hydrous oxide surface is established by the proton balance (adsorption of H or OH" and their complexes at the interface and specifically bound cations or anions. This charge can be determined from an alkalimetric-acidimetric titration curve and from a measurement of the extent of adsorption of specifically adsorbed ions. Specifically adsorbed cations (anions) increase (decrease) the pH of the point of zero charge (pzc) or the isoelectric point but lower (raise) the pH of the zero net proton condition (pznpc). [Pg.55]

Adsorbed ions, specifically, 886 Adsorbent, 969 Adsorption, 971 contact, 959 electrical field, 929 and equation of state, 931 ionic, summary, 964 irreversible, 969, 970 lattice gas models of, 965 nonlocalized, 928, 958 organic and inorganic, 972 of intermediates, 1192... [Pg.30]

If the electrolyte contains an ion specifically adsorbed, the intersection point of the ao = f (pH) curves shifts and no longer represents the PZC determined with indifferent , or non-specifically adsorbed ions. Specific adsorption of cations shifts the intersection towards lower pH anions shift it towards higher pH. For example,... [Pg.117]

Figure 9.2. Mechanisms for the stabilization of emulsions (a) adsorbed ions—specific-ion adsorption (b) colloidal sols—adsorption of polymer chains (c) polymeric stabilizers— solid particles (d) surfactants—amphiphile adsorption. Figure 9.2. Mechanisms for the stabilization of emulsions (a) adsorbed ions—specific-ion adsorption (b) colloidal sols—adsorption of polymer chains (c) polymeric stabilizers— solid particles (d) surfactants—amphiphile adsorption.
Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

Eigure 3 schematically depicts the stmcture of the electrode—solution interface. The inner Helmholtz plane (IHP) refers to the distance of closest approach of specifically adsorbed ions, generally anions to the electrode surface. In aqueous systems, water molecules adsorb onto the electrode surface. [Pg.510]

The outer Helmholtz plane (OHP) refers to the distance of closest approach of non specifically adsorbed ions, generally cations. The interactions of the ions of the OHP with the surface are not specific and have the character of longer range coulombic interactions. Cations that populate the outer Helmholtz plane are usually solvated and are generally larger in size than the anions. [Pg.510]

Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown. Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown.
Even in the absence of Faradaic current, ie, in the case of an ideally polarizable electrode, changing the potential of the electrode causes a transient current to flow, charging the double layer. The metal may have an excess charge near its surface to balance the charge of the specifically adsorbed ions. These two planes of charge separated by a small distance are analogous to a capacitor. Thus the electrode is analogous to a double-layer capacitance in parallel with a kinetic resistance. [Pg.64]

The inner layer (closest to the electrode), known as the inner Helmholtz plane (IHP), contains solvent molecules and specifically adsorbed ions (which are not hilly solvated). It is defined by the locus of points for the specifically adsorbed ions. The next layer, the outer Helmholtz plane (OHP), reflects the imaginary plane passing through the center of solvated ions at then closest approach to the surface. The solvated ions are nonspecifically adsorbed and are attracted to the surface by long-range coulombic forces. Both Helmholtz layers represent the compact layer. Such a compact layer of charges is strongly held by the electrode and can survive even when the electrode is pulled out of the solution. The Helmholtz model does not take into account the thermal motion of ions, which loosens them from the compact layer. [Pg.19]

A correlation between the amount of adsorbed ions and the electrode potential, in particular E. , has been identified apparently for the first time by Frumkin and Obrutschewa [26Fru]. A minimum of ionic adsorption was found at E, this is equivalent to the absence of specific adsorption at Ep c- The measurement of the amount of adsorbed ions was performed by measuring the ionic concentration in the solution as a function of the electrode potential or by measuring the surface concentration of adsorbed ions by e.g. radiotracer techniques (see also 4.2). (Data obtained with this method are labelled lA). [Pg.186]

Adsorption of ions from the solution. There are two types of ionic adsorption from solutions onto electrode surfaces an electrostatic (physical) adsorption under the effect of the charge on the metal surface, and a specific adsorption (chemisorption) under the effect of chemical (nonelectrostatic) forces. Specifically adsorbing ions are called surface active. Specific adsorption is more pronounced with anions. [Pg.147]

Grahame introdnced the idea that electrostatic and chemical adsorption of ions are different in character. In the former, the adsorption forces are weak, and the ions are not deformed dnring adsorption and continne to participate in thermal motion. Their distance of closest approach to the electrode surface is called the outer Helmholtz plane (coordinate x, potential /2, charge of the diffuse EDL part When the more intense (and localized) chemical forces are operative, the ions are deformed, undergo partial dehydration, and lose mobility. The centers of the specifically adsorbed ions constituting the charge are at the inner Helmholtz plane with the potential /i and coordinate JCj < Xj. [Pg.153]

Pettinger, B., Philpott, M. R. and Gordon, J. G. (1981) Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy (SERS) of Ag electrodes. [Pg.99]

By means of the thermodynamic theory of the double layer and the theory of the diffuse layer it is possible to determine the charge density ox corresponding to the adsorbed ions, i.e. ions in the inner Helmholtz plane, and the potential of the outer Helmholtz plane 2 in the presence of specific adsorption. [Pg.230]

The charge density of specifically adsorbed ions (assuming that anions are adsorbed specifically while cations are present only in the diffuse layer) for a valence-symmetrical electrolyte (z+ = — z = z) is... [Pg.230]

Opinions differ on the nature of the metal-adsorbed anion bond for specific adsorption. In all probability, a covalent bond similar to that formed in salts of the given ion with the cation of the electrode metal is not formed. The behaviour of sulphide ions on an ideal polarized mercury electrode provides evidence for this conclusion. Sulphide ions are adsorbed far more strongly than halide ions. The electrocapillary quantities (interfacial tension, differential capacity) change discontinuously at the potential at which HgS is formed. Thus, the bond of specifically adsorbed sulphide to mercury is different in nature from that in the HgS salt. Some authors have suggested that specific adsorption is a result of partial charge transfer between the adsorbed ions and the electrode. [Pg.235]

Exchangeable ions (EXC), sometimes including ions nonspecifically adsorbed and specifically absorbed on the surface of various soil components, such as carbonate, organic matter, Fe, Mn, Si, and Al oxides, and clay minerals. This part is controlled by adsorption-desorption processes. [Pg.108]

As a result of the above considerations, the Helmholtz model of the interface now shows two planes of interest (see Figure 2.8). The inner Helmholtz plane (IHP) has the solvent molecules and specifically adsorbed ions (usually anions) the outer Helmholtz plane (OHP), the solvated ions, both cations and anions. It can be seen from Figure 2.8 that the dielectric in the capacitor space now comprises two sorts of water that specifically adsorbed at the electrode surface and that lying between the two Helmholtz planes. Continuing the analogy with capacitance, these two forms of water act as the dielectric in two capacitors connected in series. [Pg.51]

Equation (2.33) now defines the double layer in the final model of the structure of the electrolyte near the electrode specifically adsorbed ions and solvent in the IHP, solvated ions forming a plane parallel to the electrode in the OHP and a dilfuse layer of ions having an excess of ions charged opposite to that on the electrode. The excess charge density in the latter region decays exponentially with distance away from the OHP. In addition, the Stern model allows some prediction of the relative importance of the diffuse vs. Helmholtz layers as a function of concentration. Table 2.1 shows... [Pg.57]

A closer inspection of the predominant peak in the conductance histogram at G0 (=77.5 pS) reveals that its position and magnitude depend on the applied electrode potential, as well as on the strength of anion adsorption (Fig. 11). The peak position shifts in the presence of weakly specifically adsorbed ions (e.g., C104-, SO)2 ) to value smaller than G0. [Pg.144]

In the presence of specifically adsorbed ions, e.g., for halides at potentials E > Epzc, the trend changes and the position of the 1 G0 peaks shifts to higher values than the quantum conductance unit. The up-shifts follow the order of adsorption strength, Cl- < Br < I-. [Pg.145]

Figure 1. A schematic representation of the synthesis of the electrochemical double layer in UHV a) adsorption of specifically adsorbed ions without solvent b) addition of hydration water c) completion of the inner layer d) addition of solvent multilayers, e) model for the double layer at an electrode surface in solution. Figure 1. A schematic representation of the synthesis of the electrochemical double layer in UHV a) adsorption of specifically adsorbed ions without solvent b) addition of hydration water c) completion of the inner layer d) addition of solvent multilayers, e) model for the double layer at an electrode surface in solution.
Titration of a suspension of a-FeOOH (goethite) in absence of specifically adsorbable ions. [Pg.18]

The Triple Layer Model. This model developped by Yates et al. (1974) and Davis et al. (1978) uses a similar idea as the Stern model the specifically adsorbed ions are... [Pg.49]

Beyond the surface plane is a layer of ions attracted to the surface by specific chemical interactions. The locus of the center of these ions is known as the inner Helmholtz plane (IHP). The charge in this plane, which results from the specifically adsorbed ions is denoted by a2, and the electrostatic potential at the IHP by The species usually assigned to this plane include... [Pg.64]

For adsorption at the IHP, mass action and material balance equations could be set up for specifically adsorbed ions yielding equations similar to those for the surface plane... [Pg.66]


See other pages where Specific adsorbed ions is mentioned: [Pg.451]    [Pg.63]    [Pg.24]    [Pg.185]    [Pg.226]    [Pg.149]    [Pg.152]    [Pg.155]    [Pg.328]    [Pg.624]    [Pg.233]    [Pg.83]    [Pg.134]    [Pg.162]    [Pg.244]    [Pg.73]    [Pg.56]    [Pg.73]    [Pg.309]    [Pg.309]    [Pg.321]    [Pg.322]    [Pg.49]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Adsorbate ions

Adsorbent, specific

Ion specifications

Specific adsorbability

Specific ion

© 2024 chempedia.info