Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tank Reactors CSTRs

Figure 8-2 CSTR. tank reactor with heat exchanger, [(b) Courtesy of Pfaudler, Inc.)... Figure 8-2 CSTR. tank reactor with heat exchanger, [(b) Courtesy of Pfaudler, Inc.)...
Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

Continuous-Flow Stirred-Tank Reactors. The synthesis of j )-tolualdehyde from toluene and carbon monoxide has been carried out using CSTR equipment (81). -Tolualdehyde (PTAL) is an intermediate in the manufacture of terephthabc acid. Hydrogen fluoride—boron trifluoride catalyzes the carbonylation of toluene to PTAL. In the industrial process, separate stirred tanks are used for each process step. Toluene and recycle HF and BF ... [Pg.522]

Copolymers are typically manufactured using weU-mixed continuous-stirred tank reactor (cstr) processes, where the lack of composition drift does not cause loss of transparency. SAN copolymers prepared in batch or continuous plug-flow processes, on the other hand, are typically hazy on account of composition drift. SAN copolymers with as Httle as 4% by wt difference in acrylonitrile composition are immiscible (44). SAN is extremely incompatible with PS as Httle as 50 ppm of PS contamination in SAN causes haze. Copolymers with over 30 wt % acrylonitrile are available and have good barrier properties. If the acrylonitrile content of the copolymer is increased to >40 wt %, the copolymer becomes ductile. These copolymers also constitute the rigid matrix phase of the ABS engineering plastics. [Pg.507]

Cooking extmders have been studied for the Uquefaction of starch, but the high temperature inactivation of the enzymes in the extmder demands doses 5—10 times higher than under conditions in a jet cooker (69). Eor example, continuous nonpressure cooking of wheat for the production of ethanol is carried out at 85°C in two continuous stirred tank reactors (CSTR) connected in series plug-fiow tube reactors may be included if only one CSTR is used (70). [Pg.296]

Despite the higher cost compared with ordinary catalysts, such as sulfuric or hydrochloric acid, the cation exchangers present several features that make their use economical. The abiHty to use these agents in a fixed-bed reactor operation makes them attractive for a continuous process (50,51). Cation-exchange catalysts can be used also in continuous stirred tank reactor (CSTR) operation. [Pg.376]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

Experimental data that are most easily obtained are of (C, t), (p, t), (/ t), or (C, T, t). Values of the rate are obtainable directly from measurements on a continuous stirred tank reactor (CSTR), or they may be obtained from (C, t) data by numerical means, usually by first curve fitting and then differentiating. When other properties are measured to follow the course of reaction—say, conductivity—those measurements are best converted to concentrations before kinetic analysis is started. [Pg.688]

Continuous stirred tank reactors (CSTRs) are frequently employed multiply and in series. Reactants are continuously fed to the first vessel they overflow through the others in succession, while being thor-... [Pg.2070]

Continuous. stirred tank reactor (CSTR), with the effluent concentration the same as the uniform vessel concentration. With a mean residence time t = V /V, the material balance is... [Pg.2083]

Continuous-flow Stirred Tank Reactor (CSTR) A reaction vessel in which the feed is continuously added, and the products continuously removed. The vessel (tank) is continuously stirred to maintain a uniform concentration within the vessel. [Pg.165]

CSTR Continuous-Elow Stirred-Tank Reactor... [Pg.179]

Various experimental methods to evaluate the kinetics of flow processes existed even in the last centuty. They developed gradually with the expansion of the petrochemical industry. In the 1940s, conversion versus residence time measurement in tubular reactors was the basic tool for rate evaluations. In the 1950s, differential reactor experiments became popular. Only in the 1960s did the use of Continuous-flow Stirred Tank Reactors (CSTRs) start to spread for kinetic studies. A large variety of CSTRs was used to study heterogeneous (contact) catalytic reactions. These included spinning basket CSTRs as well as many kinds of fixed bed reactors with external or internal recycle pumps (Jankowski 1978, Berty 1984.)... [Pg.53]

The experimental unit, shown on the previous page, is the simplest assembly that can be used for high-pressure kinetic studies and catalyst testing. The experimental method is measurement of the rate of reaction in a CSTR (Continuous Stirred Tank Reactor) by a steady-state method. [Pg.86]

In previous studies, the main tool for process improvement was the tubular reactor. This small version of an industrial reactor tube had to be operated at less severe conditions than the industrial-size reactor. Even then, isothermal conditions could never be achieved and kinetic interpretation was ambiguous. Obviously, better tools and techniques were needed for every part of the project. In particular, a better experimental reactor had to be developed that could produce more precise results at well defined conditions. By that time many home-built recycle reactors (RRs), spinning basket reactors and other laboratory continuous stirred tank reactors (CSTRs) were in use and the subject of publications. Most of these served the original author and his reaction well but few could generate the mass velocities used in actual production units. [Pg.279]

A continuous stirred tank reactor (CSTR) is usually much smaller than a batch reactor for a specific production rate. In addition to reduced inventory, using a CSTR usually results in other benefits which enhance safety, reduce costs, and improve the product quality. For example ... [Pg.30]

There are a variety of ways of accomplishing a particular unit operation. Alternative types of process equipment have different inherently safer characteristics such as inventory, operating conditions, operating techniques, mechanical complexity, and forgiveness (i.e., the process/unit operation is inclined to move itself toward a safe region, rather than unsafe). For example, to complete a reaction step, the designer could select a continuous stirred tank reactor (CSTR), a small tubular reactor, or a distillation tower to process the reaction. [Pg.67]

The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that frequently for both production and fundamental kinetic studies. Unfortunately, this name, abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises from the assumption in the analysis that the reactor is perfectly mixed, and that it is homogeneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). [Pg.383]

If the mixing is "perfect," tlie estuary behavior may be approximated by what chemical engineers define as a continuous stirred tank reactor (CSTR) (5). However, accurately estimating the time and spatial beliavior of water quality in estuaries is complicated by the effects of tidal motion as just described. The upstream and downstream currents produce substantial variations of water quality at certain points in the estuary, and tlie calculation of such variation is indeed a complicated problem. How ei er, the following simplifications provide some reiiitirkably useful results in estimating the distribution of estuarine water quality. [Pg.360]

During the manufacturing process, if the grafting increases during early stages of the reaction, the phase volume will also increase, but the size of the particles will remain constant [146-148]. Furthermore, reactor choice plays a decisive role. If the continuous stirred tank reactor (CSTR) is used, little grafting takes place and the occlusion is poor and, consequently, the rubber efficiency is poor. However, in processes akin to the discontinuous system(e.g., tower/cascade reactors), the dispersed phase contains a large number of big inclusions. [Pg.658]

Frequently, stirred tanks are used with a continuous flow of material in on one side of the tank and with a continuous outflow from the other. A particular application is the use of the tank as a continuous stirred-tank reactor (CSTR). Inevitably, there will be a vety wide range of residence times for elements of fluid in the tank. Even if the mixing is so rapid that the contents of the tank are always virtually uniform in composition, some elements of fluid will almost immediately flow to the outlet point and others will continue circulating in the tank for a very long period before leaving. The mean residence time of fluid in the tank is given by ... [Pg.310]

The particles in the latex stream leaving a continuous stirred-tank reactor (CSTR) would have a broad distribution of residence times in the reactor. This age distribution, given by Equation 5, comes about because of the rapid mixing of the feed stream with the contents of the stirred reactor. [Pg.4]

Various reactor combinations are used. For example, the product from a relatively low solids batch-mass reactor may be transferred to a suspension reactor (for HIPS), press (for PS), or unagitated batch tower (for PS) for finishing. In a similar fashion, the effluent from a continuous stirred tank reactor (CSTR) may be transferred to a tubular reactor or an unagitated or agitated tower for further polymerization before devolatilization. [Pg.72]

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]


See other pages where Tank Reactors CSTRs is mentioned: [Pg.3055]    [Pg.26]    [Pg.475]    [Pg.501]    [Pg.27]    [Pg.515]    [Pg.521]    [Pg.296]    [Pg.681]    [Pg.697]    [Pg.2069]    [Pg.2075]    [Pg.561]    [Pg.248]    [Pg.663]    [Pg.383]    [Pg.28]    [Pg.69]    [Pg.568]    [Pg.572]    [Pg.588]    [Pg.93]   


SEARCH



CSTR dynamics Continuous stirred tank reactors

CSTRs

CSTRs reactors

CSTR—See Continuous-stirred tank reactor

Case A Continuous Stirred-Tank Reactor (CSTR)

Continuous flow stirred tank reactors CSTR)

Continuous stirred tank reactor (CSTR batch recycle

Continuous stirred tank reactor (CSTR cascade

Continuous stirred tank reactor CSTR) polymerization

Continuous stirred tank reactor CSTR) tests

Continuous stirred-tank reactor CSTR)

Continuous stirred-tank reactors (CSTRs

Continuously Operated Non-isothermal Ideal Tank Reactor (CSTR)

Continuously Stirred Tank Reactor...See CSTR

Continuously operated stirred tank reactor CSTR)

Continuously stirred tank reactor CSTR)

Design of Continuous Stirred Tank Reactors (CSTRs

Flow Stirred-Tank Reactor (CSTR)

Ideal Continuous Stirred Tank Reactor (CSTR)

Ideal Continuously Operated Stirred Tank Reactor (CSTR)

Model 2 The Ideal Continuous Stirred Tank Reactor (CSTR) with V Constant

Modelling a Continuous Stirred Tank Reactor (CSTR)

Nonisothermal CSTR Continuous stirred tank reactors

Segregated CSTR Continuous stirred tank reactors

Stirred-Tank Reactor (CSTR)

Stirred-Tank Reactors (CSTRs)

Tank reactor

Tank reactor reactors

The Continuous-Stirred-Tank Reactor (CSTR)

© 2024 chempedia.info