Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous Flow Stirred-Tank Reactor CSTR

Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

Continuous-flow Stirred Tank Reactor (CSTR) A reaction vessel in which the feed is continuously added, and the products continuously removed. The vessel (tank) is continuously stirred to maintain a uniform concentration within the vessel. [Pg.165]

Various experimental methods to evaluate the kinetics of flow processes existed even in the last centuty. They developed gradually with the expansion of the petrochemical industry. In the 1940s, conversion versus residence time measurement in tubular reactors was the basic tool for rate evaluations. In the 1950s, differential reactor experiments became popular. Only in the 1960s did the use of Continuous-flow Stirred Tank Reactors (CSTRs) start to spread for kinetic studies. A large variety of CSTRs was used to study heterogeneous (contact) catalytic reactions. These included spinning basket CSTRs as well as many kinds of fixed bed reactors with external or internal recycle pumps (Jankowski 1978, Berty 1984.)... [Pg.53]

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]

It is important to understand that the time constant xp of a process, say, a stirred tank is not the same as the space time x. Review this point with the stirred-tank heater example in Chapter 2. Further, derive the time constant of a continuous flow stirred-tank reactor (CSTR) with a first-order chemical reaction... [Pg.61]

The Continuous Flow Stirred Tank Reactor (CSTR)... [Pg.269]

The bioreactor has been introduced in general terms in the previous section. In this section the basic bioreactor concepts, i.e., the batch, the fed-batch, the continuous-flow stirred-tank reactor (CSTR), the cascade of CSTRs and the plug-flow reactor, will be described. [Pg.407]

Three ideal reactor types are relevant from reactor theory [15], the two continuous flow types, the plug flow reactor (PFR) and continuous flow stirred tank reactor (CSTR), and the well-stirred batch reactor. The... [Pg.305]

Various laboratory reactors have been described in the literature [3, 11-13]. The most simple one is the packed bed tubular reactor where an amount of catalyst is held between plugs of quartz wool or wire mesh screens which the reactants pass through, preferably in plug flow . For low conversions this reactor is operated in the differential mode, for high conversions over the catalyst bed in the integral mode. By recirculation of the reactor exit flow one can approach a well mixed reactor system, the continuous flow stirred tank reactor (CSTR). This can be done either externally or internally [11, 12]. Without inlet and outlet feed, this reactor becomes a batch reactor, where the composition changes as a function of time (transient operation), in contrast with the steady state operation of the continuous flow reactors. [Pg.386]

Another type of continuous flow reactor is found in industry the continuous flow stirred tank reactor (CSTR), Fig. 7.2. Stirring of the reactor content might be necessary to increase the heat exchange with the surroundings or to maintain a heterogeneous catalyst in suspension. If more than one fluid phase is present in the reactor, stirring increases the contact surface area and, hence, the rate of mass transfer between these phases. [Pg.257]


See other pages where Continuous Flow Stirred-Tank Reactor CSTR is mentioned: [Pg.515]    [Pg.282]    [Pg.174]    [Pg.207]    [Pg.583]    [Pg.71]   
See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.20 , Pg.153 ]




SEARCH



CSTRs

CSTRs reactors

CSTRs tank reactors

Continuous flow

Continuous flow reactors continuously stirred tank

Continuous flow stirred tank reactor

Continuous stirred reactor

Continuous stirred tank reactor

Continuous stirring tank reactor

Continuous-flow reactors

Continuous-flow stirred tank

Continuously stirred tank

Continuously stirred tank reactor

Flow reactors CSTRs

Flow stirred tank reactors

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred continuous

Stirred continuous flow

Stirred flow

Stirred tank reactors

Stirred-Tank Reactors (CSTRs)

Tank reactor

Tank reactor reactors

Tank reactors, continuous flow

© 2024 chempedia.info