Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallization solution type

The thermal method is based on the much higher solubiUty of KCl in hot water as compared to the solubiUty of NaCl. The KCl is recovered in vacuum crystallizers, filtered or centrifuged, dried, and sometimes granulated by compaction. Product from the thermal beneficiation method usually is of relatively high purity and is particularly suitable for use in formulating solution-type fertilizers. Guaranteed K2O content of this product is usually 62%... [Pg.232]

Neoprene WHV-A. It is a non-peptizable and mercaptan-modified polychloro-prene elastomer. It is a slow-crystallizing, high molecular weight type and contains only 85% trans-, 4 structure. It is generally used in blends with low molecular weight crystallizing polychloroprene types to increase solution viscosity. [Pg.594]

After demonsfrafing fhe sfabilizafion of CdS- and CdSe-based PEC, using sulfide- or polysulfide-confaining elecfrolytes, Ellis el al. [51] proceeded lo show dial fhe photoanodic dissolution of single-crystal n-type CdTe, which was found to be unstable in a polysulfide electrolyte, could be completely quenched by adding Na2Te in the alkaline solution of NaOH. The photoelectrochemistry in their cell was considered to be consisting of the reactions... [Pg.218]

Center-Fed Column Crystallizers Two types of center-fed column crystallizers are illustrated on Figs. 20-8 and 20-9. As in a simple distillation column, these devices are composed of three distinct sections a freezing or recovery section, where solute is frozen from the... [Pg.7]

In electrolytic systems the crystallization solvent type will affect the degree of solute ionization. This is an important factor in the rate of nucleation and can be successfully utilized for polymorphic control [11]. [Pg.32]

Both methods require the use of a broad range of crystallization solutions for the initial screening of crystals. These screens usually come in two types, grid screens and sparse matrix screens ... [Pg.467]

Solid polymer and gel polymer electrolytes could be viewed as the special variation of the solution-type electrolyte. In the former, the solvents are polar macromolecules that dissolve salts, while, in the latter, only a small portion of high polymer is employed as the mechanical matrix, which is either soaked with or swollen by essentially the same liquid electrolytes. One exception exists molten salt (ionic liquid) electrolytes where no solvent is present and the dissociation of opposite ions is solely achieved by the thermal disintegration of the salt lattice (melting). Polymer electrolyte will be reviewed in section 8 ( Novel Electrolyte Systems ), although lithium ion technology based on gel polymer electrolytes has in fact entered the market and accounted for 4% of lithium ion cells manufactured in 2000. On the other hand, ionic liquid electrolytes will be omitted, due to both the limited literature concerning this topic and the fact that the application of ionic liquid electrolytes in lithium ion devices remains dubious. Since most of the ionic liquid systems are still in a supercooled state at ambient temperature, it is unlikely that the metastable liquid state could be maintained in an actual electrochemical device, wherein electrode materials would serve as effective nucleation sites for crystallization. [Pg.68]

Mixed crystals of type I are very stable and can be used for electrochemical investigations. Recently, it has been shown that such solid solutions maintain the regular cubic structure and only a single... [Pg.706]

Mixed crystals of type II have been used in the form of thin films on electrodes as well as in the form of chemically synthesized powders immobilized on electrodes. Depending on the radii of the ions involved in the synthesis, solid solutions can also be formed as single phases. In the case of K CuCo[Fe(CN)(5] films, XRD results indicated that a single phase with a cubic face-centered symmetry was formed [31]. The situation is more complex in the case of K NiPd[Fe(CN)6] deposited as a thin film on electrodes [32]. Kulesza etal. have pointed out that there is a critical concentration of Pd + below which Pd + was taken as the countercation at interstitial position, while above that value a solid solution is formed in which both Ni " " and Pd + are nitrogen coordinated. [Pg.707]

Using R2N(CH2)2NH(CH2)3OH with Cu(C104)2 and NaOH in aqueous solution, two types of complex can be isolated, green crystals of type (154), and blue crystals containing trinuclear complexes (155).696... [Pg.314]

When an ionic single crystal is immersed in solution, the surrounding solution becomes saturated with respect to the substrate ions, so, initially the system is at equilibrium and there is no net dissolution or growth. With the UME positioned close to the substrate, the tip potential is stepped from a value where no electrochemical reactions occur to one where the electrolysis of one type of the lattice ion occurs at a diffusion controlled rate. This process creates a local undersaturation at the crystal-solution interface, perturbs the interfacial equilibrium, and provides the driving force for the dissolution reaction. The perturbation mode can be employed to initiate, and quantitatively monitor, dissolution reactions, providing unequivocal information on the kinetics and mechanism of the process. [Pg.223]

In another example, an antiarrhythmic under development (McCauley etal. 1993) was shown to exist in two anhydrous polymorphs, two dihydrated enantiotropic polymorphs, a monohydrate, and the solvates of several organic solvents. Following characterization of all of these modifications it was desired to selectively obtain one of the dihydrates, termed modification A, which is thermodynamically less stable at room temperature than another dihydrate, D, in contact with aqueous solutions, but A is more stable over a wider range of relative humidities. The enantiotropic transition point between these two crystal modifications is 37 °C. Procedures were developed for obtaining A preferentially. Above the transition point a thermodynamic crystallization is carried out at 50 °C, using type A seeds as an added precaution to force the crystallization to type A. The desired type A can also be obtained under kinetic conditions by spontaneous crystallization below the transition point followed by rapid filtration and removal of excess water. The latter procedure prevents a transformation from the A state (metastable below the transition temperature) to the D form in the crystallization medium. Similar considerations were applied to develop procedures for the selective crystallization of the a and /3 modifications of glutamic acid (Kitamura 1989). [Pg.74]

The larger particle sizes thus could be accretions of these basic units, and several such agglomerations were noted. The rods were arranged side by side, closely packed in bundles. Apparently the alkali peels these rods from the coal mass, and they subsequently agglomerate in solution, similar to tactoid formation (12), according to a crystal growth type of clustering theory (13, 14).)... [Pg.315]

Ultrasonic nebulization This has been applied since the early work on ICP-AES [151], Both nebulizer types where the sample liquid flows over the nebulizer transducer crystal and types where the ultrasonic radiation (at 1 MHz frequency) is focussed through a membrane on the standing sample solution have been used. When applying aerosol desolvation the power of detection of ICP-AES can be improved by a factor of 10 by using ultrasonic nebulization. This specifically applies to elements such as As, Cd and Pb, which are of environmental interest. However, because of the limitations discussed in Section 3.2, the approach is of particular use in the case of dilute analytes such as in water analysis [150]. Additional fine detailed development, however, is regularly carried out, as with ICP-AES the process is crucial for elements such as Cd, As and Pb for which threshold values in fresh water samples can just still be measured reliably with this type of sample introduction. Such a development is the microultrasonic nebulizer (pUSN) operated with argon carrier gas, as described by Tarr et al. [410]. [Pg.228]


See other pages where Crystallization solution type is mentioned: [Pg.202]    [Pg.473]    [Pg.476]    [Pg.1993]    [Pg.131]    [Pg.213]    [Pg.214]    [Pg.63]    [Pg.83]    [Pg.20]    [Pg.376]    [Pg.103]    [Pg.473]    [Pg.476]    [Pg.300]    [Pg.31]    [Pg.265]    [Pg.56]    [Pg.232]    [Pg.323]    [Pg.81]    [Pg.1751]    [Pg.789]    [Pg.97]    [Pg.748]    [Pg.838]    [Pg.4]    [Pg.1308]    [Pg.15]   
See also in sourсe #XX -- [ Pg.523 ]

See also in sourсe #XX -- [ Pg.555 ]

See also in sourсe #XX -- [ Pg.523 ]

See also in sourсe #XX -- [ Pg.523 ]

See also in sourсe #XX -- [ Pg.523 ]




SEARCH



Crystal types

Crystallization solute

Solution Crystallized

© 2024 chempedia.info