Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyclic cross-metathesis

During the past 2 years several research groups have published research that either uses or expands upon Crowe s acyclic cross-metathesis chemistry. The first reported application of this chemistry was in the synthesis of frans-disubstitut-ed homoallylic alcohols [30]. Cross-metathesis of styrenes with homoallylic silyl ethers 15, prepared via asymmetric allylboration and subsequent alcohol protection, gave the desired trans cross-metathesis products in moderate to good yields (Eq. 15). [Pg.173]

The ring-opening cross-metathesis reaction is similar to the acyclic cross-metathesis reaction discussed above, except that one of the acyclic alkenes is replaced with a strained cyclic alkene (Scheme 5). [Pg.181]

The report by Basset and co-workers on the metathesis of sulphur-containing alkenes using a tungsten alkylidene complex, mentioned previously for the acyclic cross-metathesis reaction (see Sect. 2.2), also contained early examples of ring-opening cross-metathesis of functionalised alkenes [20]. Allyl methyl sulphide was reacted with norbornene in the presence of the tungsten catalyst 5, to yield the desired ring-opened diene 35 (Eq. 29). [Pg.182]

Optimal yields were obtained by slow addition of the alkene substrates to a solution of the ruthenium vinylalkylidene and this allowed just two equivalents of the acyclic alkene to be used without significant formation of polymeric products. Unlike the acyclic cross-metathesis reactions, which generally favour the formation of tram products, the above ring-opening metathesis reactions yielded products in which the cis stereoisomer is predominant. Particularly noteworthy was the absence of significant amounts of products of type 31, formed from metathesis of one cyclic and two acyclic alkenes. In fact, considering the number of possible ring-opened products that could have been formed, these reactions showed remarkable selectivity (GC yields > 80%). [Pg.183]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)... Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)...
Alkyne cross metathesis Acyclic diene metathesis Asymmetric ring-closing metathesis Asymmetric ring-opening metathesis Cross metathesis... [Pg.270]

Asymmetric AUylic Alkylation acetylacetonate Asymmetric Cross-Metathesis Acyclic Diene Metathesis allyl ether... [Pg.348]

The first published report on the use of this catalyst for the cross-metathesis of functionalised acyclic alkenes was by Blechert and co-workers towards the end of 1996 [37]. This report was also noteworthy for its use of polymer-bound alkenes in the cross-metathesis reaction. Tritylpolystyrene-bound AT-Boc N-al-lylglycinol 18 was successfully cross-metathesised with both unfunctionalised alkenes and unsaturated esters (Eq. 17) (Table 1). [Pg.174]

Successful ring-opening cross-metathesis with symmetrical internal acyclic alkenes was, however, achieved by Blechert and Schneider [49]. Reaction of a variety of functionalised norbornene derivatives with fraws-hex-3-ene in the presence of the ruthenium vinylalkylidene catalyst 4 yielded the ring-opened products as predominantly trans-trans isomers (for example Eq. 33). [Pg.184]

Use of a symmetrical acyclic alkene limits the possible metathesis products to the desired diene (for example 45) and products formed from polymerisation of the cyclic substrate. Competing ROMP was suppressed in these reactions by using dilute conditions and a tenfold excess of hex-3-ene. By adding the cyclic substrate slowly to a solution of the catalyst and ris-hex-3-ene (which was significantly more reactive than the trans isomer), less than two equivalents of the acyclic alkene were used without causing a significant drop in the cross-metathesis yield. [Pg.185]

Replacing hex-3-ene with trans-1,4-dimethoxybut-2-ene resulted in slightly slower reactions, but gave comparable yields of cross-metathesis products. The desired reactions did not take place, however, when ris-but-2-ene-l,4-diol was used as the acyclic substrate. [Pg.185]

A subsequent publication by Blechert and co-workers demonstrated that the molybdenum alkylidene 3 and the ruthenium benzylidene 17 were also active catalysts for ring-opening cross-metathesis reactions [50]. Norbornene and 7-oxanorbornene derivatives underwent selective ring-opening cross-metathesis with a variety of terminal acyclic alkenes including acrylonitrile, an allylsilane, an allyl stannane and allyl cyanide (for example Eq. 34). [Pg.185]

Scheme 10. Olefin metathesis RCM (ring closing metathesis), ROMP (ring opening metahesis polymerization), ADMET (acyclic diene metathesis), CM (cross metathesis). Scheme 10. Olefin metathesis RCM (ring closing metathesis), ROMP (ring opening metahesis polymerization), ADMET (acyclic diene metathesis), CM (cross metathesis).
As part of an investigation into new synthetic routes to the important acyclic nucleoside class of antiviral drugs, the cross metathesis of 9-allyl-6-chloropurine with 2,2-dimethyl-4-vinyl-l,3-dioxolane was attempted <2003TL9177>. The reaction was confounded by the coordination of the ruthenium metathesis catalyst with the purine heterocyclic nitrogens. This was overcome to some extent by using the /i-toluenesulfonic acid or hydrogen chloride salts of the... [Pg.578]

Acyclic dienes are the products in cross-metathesis of cycloalkenes and acyclic alkenes. With ethylene, a,co-dienes are formed ... [Pg.697]

Cross-metathesis enables the efficient preparation of acyclic alkenes and 1,3-dienes on insoluble supports (Figure 5.16). Unfortunately, some types of substrate show a high tendency to yield products of self-metathesis, i.e. symmetrical internal alkenes produced by dimerization of the resin-bound alkene. This is the case, for instance, with allylglycine and homoallylglycine derivatives. Dimerization of the resin-bound alkene can, however, be effectively suppressed by reducing the loading of the support [127]. [Pg.186]

Metathesis of alkenes has been reviewed in terms of cross-metathesis, ring opening and closing, disproportionation, transmutation, and self-metathesis.34 A review on catalytic processes involving ft -carbon elimination has summarized recent progress on palladium-catalysed C-C bond cleavage in various cyclic and acyclic systems.35... [Pg.312]

Consider a telomer being formed from a cyclopentenyl polymer growing under the pairwise mechanism (Scheme 12.14) with growth being curtailed by cross-metathesis under two extreme conditions (i) with only pent-2-ene present (C4 C5 C6 = 0 100 0) and (ii) with a fully equilibrated mixture of acyclic monoalkenes (C4 C5 C6 = 1 2 1). Under condition (i), one would expect the formation of only hierarchical telomers (n = 1,2,3,4,5, etc.) of the type (C2)-[(cyc-C5) ]-(C3) as the pent-2-ene is split into a C2 and a C3 unit across the growing cyclo polyene. In contrast, under condition (ii), one would expect each hierarchical telomer to be formed in a 1 2 1 ratio of (C2)-[(cyc-C5)n]-(C2) (C2)-[(cyc-C5) ]-(C3) (C3)-[(cyc-Q)n]-(C3)> depending on whether there is cross-metathesis with C4, C5 or C6 (ratio = 1 2 1). The outcome will thus depend on how quickly the pent-2-ene is equilibrated by homo-metathesis to yield the C4, C5 and C6 mixture. Analysis of the rate of pent-2-ene homo-metathesis showed that it was not fast. Indeed, it proceeded at approximately the same rate as the telomerisation reaction. One would thus expect the telomer product early in the reaction to be essentially pure (C2)-[(cyc-C5) ]-(C3) species. Then, as C4 and C6 increase in concentration relative to C5, formation of the (C2)-[(cyc-C5) ]-(C2) and (C3)-[(cyc-C5) ]-(C3) telomers should increase proportionally. This was not found to be the case. [Pg.346]

It was recognized early that efficient olefin cross metathesis could provide new methods for the synthesis of complex molecules. However, neither (la) nor (2a) were very effective at intermolecular cross metathesis owing to poor reaction selectivity (cross vs. intramolecular metathesis) and low E. Z ratios see (E) (Z) Isomers) The advent of more active and functional group tolerant olefin metathesis catalysts recently made cross metathesis a viable route for constructing a large variety of fimctionalized acyclic alkenes. [Pg.5609]

Several examples of the use of (4a) catalyzed cross metathesis of protected allylic sugars, or vinyl substituted heterocycles or vinylated functional groups have been reported. Vinylphosphonate-linked nucleotide dimers were synthesized by cross metathesis using complex (4a), achieving products with E Z ratios of >20 1 in moderate to good yields (equation 17). A metal-mediated route to acyclic nucleosides developed by Agrofoglio and coworkers produced nucleosides in two steps from parent pyrimidines and purines. ... [Pg.5609]

Hoveyda and coworkers recently developed sequential catalytic cross metathesis/asymmetric conjugate addition utilizing (4b) to make acyclic aliphatic enones (equation 31)3 Blechert developed a synthetic route toward bicyclic N-heterocycles that hinged on cross metathesis and double reductive amination to access compounds like... [Pg.5617]

Ring closing and cross metathesis allow the rapid synthesis of simple cyclic and acyclic systems. The metathesis activity that is now possible using well-defined catalysts allows for the rapid generation of complexity from simple starting materials by relay processes and combinations of metathesis steps. Many of these reactions have been recognized only recently, are now beginning to be used in complex synthetic transformations. A few of these types of reactions will be outlined here to demonstrate the power of these multistep, relay processes. In these processes, an initial metathesis step leads to a new carbene that results in further transformations of the substrate. [Pg.172]


See other pages where Acyclic cross-metathesis is mentioned: [Pg.164]    [Pg.164]    [Pg.167]    [Pg.415]    [Pg.164]    [Pg.164]    [Pg.167]    [Pg.415]    [Pg.82]    [Pg.173]    [Pg.185]    [Pg.468]    [Pg.481]    [Pg.196]    [Pg.65]    [Pg.180]    [Pg.632]    [Pg.1500]    [Pg.346]    [Pg.480]    [Pg.27]    [Pg.26]    [Pg.593]    [Pg.205]    [Pg.5596]    [Pg.5628]    [Pg.75]    [Pg.153]    [Pg.325]   
See also in sourсe #XX -- [ Pg.313 ]




SEARCH



Acyclic metathesis

Cross metathesis

© 2024 chempedia.info