Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross link example

A group of well-characterized AB surfactants has been prepared and investigated [6]. Numerous other polymeric structures have been made, including (AB) , BAB and branched and cross-linked examples. Such materials may provide a unique functionality in a particular application but there has been no systematic investigation of their properties. [Pg.187]

Polymer class General properties Range of use temperatures Degree of crystallinity Degree of cross linking Example... [Pg.30]

Perflnoroelastomers (FFKM) contain a CSM that is essential for their cross-linking. Examples of CSMs are as follows ... [Pg.100]

Subsequent reactions are strongly dependent on the chemical nature of the polymer. Recombination of radicals to form a new chemical bond is often observed and is the key process in radiation-induced cross-linking. Examples of polymers in which cross-linking is favored include polyolefins such as polyethylene (PE), natural rubber, or poly-dimethylsiloxane (PDMS). In other polymers, including most fluori-nated polymers, poly(methyl methacrylate) (PMMA), and natural polymers such as DNA and cellulose, chain scission is favored, leading to degradation of the polymer (for a more comprehensive list, see Drobny [2, p. 21]). [Pg.14]

Note that in the compound (CH3)2Si(OH)2 the silicon atom can hold two OH groups, unlike carbon. It is this property that makes the existence of silicones possible. By variation of the compounds and conditions of hydrolysis, straight chains, rings and cross-linked polymers are obtained, for example ... [Pg.190]

Alternatively the ion exchanger may be a synthetic polymer, for example a sulphonated polystyrene, where the negative charges are carried on the —SO3 ends, and the interlocking structure is built up by cross-linking between the carbon atoms of the chain. The important property of any such solid is that the negative charge is static—a part of the solid—whilst the positive ions can move from their positions. Suppose, for example, that the positive ions are... [Pg.274]

A polymer is a macromolecule that is constructed by chemically linking together a sequent of molecular fragments. In simple synthetic polymers such as polyethylene or polystyrer all of the molecular fragments comprise the same basic unit (or monomer). Other poly me contain mixtures of monomers. Proteins, for example, are polypeptide chains in which eac unit is one of the twenty amino acids. Cross-linking between different chains gives rise to j-further variations in the constitution and structure of a polymer. All of these features me affect the overall properties of the molecule, sometimes in a dramatic way. Moreover, or... [Pg.439]

Some commercially important cross-linked polymers go virtually without names. These are heavily and randomly cross-linked polymers which are insoluble and infusible and therefore widely used in the manufacture of such molded items as automobile and household appliance parts. These materials are called resins and, at best, are named by specifying the monomers which go into their production. Often even this information is sketchy. Examples of this situation are provided by phenol-formaldehyde and urea-formaldehyde resins, for which typical structures are given by structures [IV] and [V], respectively ... [Pg.22]

Vinyl polymers cross-linked with divinyl monomers, for example, polystyrene polymerized in the presence of divinyl benzene. [Pg.137]

In this section we examine some examples of cross-linked step-growth polymers. The systems we shall describe are thermosetting polymers of considerable industrial importance. The chemistry of these polymerization reactions is more complex than the hypothetical AB reactions of our models. We choose to describe these commercial polymers rather than model systems which might conform better to the theoretical developments of the last section both because of the importance of these materials and because the theoretical concepts provide a framework for understanding more complex systems, even if they are not quantitatively successful. [Pg.323]

An example of a size-exclusion chromatogram is given in Figure 7 for both a bench-scale (23.5 mL column) separation and a large-scale (86,000 mL column) mn. The stationary phase is Sepharose CL-6B, a cross-linked agarose with a nominal molecular weight range of 5000-2 x 10 (see Fig. 6) (31). [Pg.49]

Acid-C t lyzed Chemistry. Acid-catalyzed reactions form the basis for essentially all chemically amplified resist systems for microlithography appHcations (61). These reactions can be generally classified as either cross-linking (photopolymerization) or deprotection reactions. The latter are used to unmask acidic functionality such as phenohc or pendent carboxyhc acid groups, and thus lend themselves to positive tone resist apphcations. Acid-catalyzed polymer cross-linking and photopolymerization reactions, on the other hand, find appHcation in negative tone resist systems. Representative examples of each type of chemistry are Hsted below. [Pg.125]

Polyphenols. Another increa singly important example of the chemical stabilization process is the production of phenoHc foams (59—62) by cross-linking polyphenols (resoles and novolacs) (see Phenolic resins). The principal features of phenoHc foams are low flammabiUty, solvent resistance, and excellent dimensional stabiUty over a wide temperature range (59), so that they are good thermal iasulating materials. [Pg.406]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Substituted Phenols. Phenol itself is used in the largest volume, but substituted phenols are used for specialty resins (Table 2). Substituted phenols are typically alkylated phenols made from phenol and a corresponding a-olefin with acid catalysts (13). Acidic catalysis is frequendy in the form of an ion-exchange resin (lER) and the reaction proceeds preferentially in the para position. For example, in the production of /-butylphenol using isobutylene, the product is >95% para-substituted. The incorporation of alkyl phenols into the resin reduces reactivity, hardness, cross-link density, and color formation, but increases solubiHty in nonpolar solvents, dexibiHty, and compatibiHty with natural oils. [Pg.292]


See other pages where Cross link example is mentioned: [Pg.193]    [Pg.233]    [Pg.1526]    [Pg.8339]    [Pg.141]    [Pg.532]    [Pg.193]    [Pg.233]    [Pg.1526]    [Pg.8339]    [Pg.141]    [Pg.532]    [Pg.2564]    [Pg.2603]    [Pg.1109]    [Pg.206]    [Pg.162]    [Pg.274]    [Pg.348]    [Pg.118]    [Pg.125]    [Pg.127]    [Pg.207]    [Pg.321]    [Pg.134]    [Pg.231]    [Pg.233]    [Pg.321]    [Pg.405]    [Pg.207]    [Pg.73]    [Pg.151]    [Pg.13]    [Pg.263]    [Pg.408]    [Pg.508]    [Pg.265]    [Pg.518]    [Pg.309]    [Pg.270]    [Pg.343]    [Pg.361]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 ]




SEARCH



Cross example

© 2024 chempedia.info