Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross alkene

Crossed Alkene-Alkene Coupling 2323 Allene Synthesis by sp -sp Coupling... [Pg.481]

From Other Alkenes-Transition Metal Catalyzed Cross-Coupling and Olefin... [Pg.103]

The cross-coupling of two alkenes also takes place. Alkenes such as acrylate react regioselectively with 1,3-dimethyluracil (290) to afford 5-(l-alkenyl)ura-cils such as 291 in a high yield[260]. [Pg.60]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

A cross-linked and crystalline copoly(ester—imide) containing an alkene function was made by reaction of an unsaturated diacid chloride containing a cychc imido group with ethylene glycol at low temperature (27). [Pg.532]

Generally, unsaturated compounds, eg, alkenes and natural fats and their derivatives, are much more reactive toward sulfur than alkanes. Sulfur reacts with unsaturated compounds at temperatures of 120—215°C, forming products that are usually dark and often viscous cross-linked mixtures of dithiole-3-thiones (eq. 4) (2) and sulfides (Table 1) (3). [Pg.206]

Burger s criss-cross cycloaddition reaction of hexafluoracetone-azine (76S349) is also a synthetic method of the [CNN + CC] class. In turn, the azomethines thus produced, (625) and (626) (79LA133), can react with alkenes and alkynes to yield azapentalene derivatives (627) and (628), or isomerize to A -pyrazolines (629) which subsequently lose HCF3 to afford pyrazoles (630 Scheme 56) (82MI40401). [Pg.283]

Platinum compounds Hydrosilation cross-linking of silicone polymers Hydrogenation, isomerization and hydroformylation of alkenes Automobile exhaust catalyst Sensitization dermatitis... [Pg.121]

The condition defined by equation (8) is met by adjustment of (Qg(3)) nd (T(3)). The pressures at the second stripping flow inlet and that of the outlet for solute (C) must be made equal, or close to equal, to prevent cross-flow. Scott and Maggs [7] designed a three stage moving bed system, similar to that described above, to extract pure benzene from coal gas. Coal gas contains a range of saturated aliphatic hydrocarbons, alkenes, naphthenes and aromatics. In the above theory the saturated aliphatic hydrocarbons, alkenes and naphthenes are represented by solute (A). [Pg.437]

The main product, benzene, is represented by solute (B), and the high boiling aromatics are represented by solute (C) (toluene and xylenes). The analysis of the products they obtained are shown in Figure 12. The material stripped form the top section (section (1)) is seen to contain the alkanes, alkenes and naphthenes and very little benzene. The product stripped from the center section appears to be virtually pure benzene. The product from section (3) contained toluene, the xylenes and thiophen which elutes close to benzene. The thiophen, however, was only eliminated at the expense of some loss of benzene to the lower stripping section. Although the system works well it proved experimentally difficult to set up and maintain under constant operating conditions. The problems arose largely from the need to adjust the pressures that must prevent cross-flow. The system as described would be virtually impossible to operate with a liquid mobile phase. [Pg.438]

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

A co-solvent that is poorly miscible with ionic liquids but highly miscible with the products can be added in the separation step (after the reaction) to facilitate the product separation. The Pd-mediated FFeck coupling of aryl halides or benzoic anhydride with alkenes, for example, can be performed in [BMIM][PFg], the products being extracted with cyclohexane. In this case, water can also be used as an extraction solvent, to remove the salt by-products formed in the reaction [18]. From a practical point of view, the addition of a co-solvent can result in cross-contamination, and it has to be separated from the products in a supplementary step (distillation). More interestingly, unreacted organic reactants themselves (if they have nonpolar character) can be recycled to the separation step and can be used as the extractant co-solvent. [Pg.265]

In 1971, a short communication was published [54] by Kumada and co-workers reporting the formation of di- and polysilanes from dihydrosilanes by the action of a platinum complex. Also the Wilkinson catalyst (Ph3P)3RhCl promotes hydrosilation. If no alkenes are present, formation of chain silanes occurs. A thorough analysis of the product distribution shows a high preference for polymers (without a catalyst, disproportionation reactions of the silanes prevail). Cross experiments indicate the formation of a silylene complex as intermediate and in solution, free silylenes could also be trapped by Et3SiH [55, 56],... [Pg.30]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

The resulting carbene complex 41b bears a hetero substituent and shows activity in the ring-opening/cross metathesis of strained bicyclic alkenes and... [Pg.233]

A first evaluation of complex 71a by Blechert et al. revealed that its catalytic activity differs significantly from that of the monophosphine complex 56d [49b]. In particular, 71a appears to have a much stronger tendency to promote cross metathesis rather than RCM. Follow-up studies by the same group demonstrate that 71a allows the cross metathesis of electron-deficient alkenes with excellent yields and chemoselectivities [50]. For instance, alkene 72 undergoes selective cross metathesis with 3,3,3-trifluoropropene to give 73 in excellent yield and selectivity. Precatalyst 56d, under identical conditions, furnishes a mixture of 73 and the homodimer of 72 (Scheme 17) [50a]. While 56d was found to be active in the cross metathesis involving acrylates, it failed with acrylonitrile [51]. With 71a, this problem can be overcome, as illustrated for the conversion of 72—>74 (Scheme 17) [50b]. [Pg.246]

The cross metathesis of acrylic amides [71] and the self metathesis of two-electron-deficient alkenes [72] is possible using the precatalyst 56d. The performance of the three second-generation catalysts 56c,d (Table 3) and 71a (Scheme 16) in a domino RCM/CM of enynes and acrylates was recently compared by Grimaud et al. [73]. Enyne metathesis of 81 in the presence of methyl acrylate gives the desired product 82 only with phosphine-free 71a as a pre-... [Pg.250]

Fig. la—d Typical alkene metathesis reactions ring-closing (RCM) and ring-opening (ROM) metathesis (a), diene cross metathesis (CM, b), ROM-RCM (c), and ROM-double RCM (d) sequences (ring-rearrangement reactions, RRM)... [Pg.271]

Olefin cross metathesis starts to compete with traditional C=C bondforming reactions such as the Wittig reaction and its modifications, as illustrated by the increasing use of electron-deficient conjugated alkenes for the ( )-selective construction of enals and enoates. [Pg.359]

A cross-coupling reactions of terminal alkynes with terminal alkenes 32 supported on Merrifield-resin (Scheme 4.5) in the presence of Grubs ruthenium initiator [Cl2(PCy3)2Ru = CHPh] provided efficient access to supported 1,3-dienes 33 which were transformed into octahydrobenzazepinones 34 via MeAlCl2 catalyzed Diels-Alder reaction [27]. [Pg.152]


See other pages where Cross alkene is mentioned: [Pg.193]    [Pg.484]    [Pg.193]    [Pg.484]    [Pg.86]    [Pg.209]    [Pg.213]    [Pg.222]    [Pg.315]    [Pg.124]    [Pg.56]    [Pg.86]    [Pg.33]    [Pg.873]    [Pg.1032]    [Pg.45]    [Pg.789]    [Pg.246]    [Pg.273]    [Pg.329]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Alkene cross metathesis esters)

Alkene derivatives cross-coupling

Alkenes Negishi cross-coupling reaction

Alkenes cross-coupling reactions

Alkenes cross-dehydrogenative coupling

Alkenes cross-metathesis, enyne

Alkenes crossed coupling reactions

Alkenes oxidative cross-coupling

Alkynes cross metathesis with alkenes

Allyl cross metathesis with alkenes

Allylic alcohols cross-coupling with alkenes

Cross cyclic/acyclic alkene

Cross metathese, alkene

Cross with 1,1-disubstituted alkenes

Cross-coupling alkenes

Cross-coupling allenes + alkenes

Cross-coupling carbene + alkene

Cross-coupling of alkenes

Ethylene cross metathesis with alkenes

Intermolecular reactions, cross-coupling with alkenes

Metalated alkenes, cross-coupling with vinyl

Metathesis cross-alkene

Metathesis, alkene (olefin cross

Organyl halides cross-coupling with alkenes

Pd(II)-catalysed cross-coupling of vinylic tellurides with alkenes

Reaction cross-section alkenes

Transition metal catalysts alkene cross-coupling reactions

© 2024 chempedia.info