Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes cross-metathesis

Fig. la—d Typical alkene metathesis reactions ring-closing (RCM) and ring-opening (ROM) metathesis (a), diene cross metathesis (CM, b), ROM-RCM (c), and ROM-double RCM (d) sequences (ring-rearrangement reactions, RRM)... [Pg.271]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)... Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)...
Enyne metathesis starting either from acetylenic boronates and homoallylic alcohols [104a,c] or from propargyl alcohols and allylboronates [104b] has recently been described. The resulting boronated dienes can be converted to allenes or cycloaddition products. The cross metathesis of vinylcyclopropyl-boronates directed toward the total synthesis of natural products has very recently been investigated by Pietruszka et al. [104d]. [Pg.256]

Alkyne cross metathesis Acyclic diene metathesis Asymmetric ring-closing metathesis Asymmetric ring-opening metathesis Cross metathesis... [Pg.270]

The significant potential of the ruthenium complex 65 was further underlined in the catalytic asymmetric ring-opening/cross metathesis of the cyclic alkene 70 (Scheme 44). This transformation is catalyzed by 5% mol of 65 at room temperature, in air, and with undistilled and nondegassed THF to deliver the corresponding diene 71 in 96% ee and 66% isolated yield. In standard conditions (distilled and degassed THF), the alkene 70 reacts in 75 min to give the diene in 95% ee and 76% yield, with only 0.5 mol % of catalyst. [Pg.219]

Asymmetric AUylic Alkylation acetylacetonate Asymmetric Cross-Metathesis Acyclic Diene Metathesis allyl ether... [Pg.348]

Keywords Cross-metathesis, Ring-opening, Alkenes, Catalysis, Dienes... [Pg.164]

The reaction tolerated a variety of functionality, including ester and ether groups on the alkyl-substituted alkene at least two carbons away from the double bond, and raefa-nitro or para-methoxy substituents on the styrene. As expected, cross-metathesis occurred selectively at the less hindered monosubsti-tuted double bond of dienes also containing a disubstituted alkene (Eq. 8). [Pg.170]

The success of the cross-metathesis reactions involving styrene and acrylonitrile led to an investigation into the reactivity of other Ji-substituted terminal alkenes [27]. Vinylboranes, enones, dienes, enynes and a,p-unsaturated esters were tested, but all of these substrates failed to undergo the desired cross-metathesis reaction using the molybdenum catalyst. [Pg.171]

The report by Basset and co-workers on the metathesis of sulphur-containing alkenes using a tungsten alkylidene complex, mentioned previously for the acyclic cross-metathesis reaction (see Sect. 2.2), also contained early examples of ring-opening cross-metathesis of functionalised alkenes [20]. Allyl methyl sulphide was reacted with norbornene in the presence of the tungsten catalyst 5, to yield the desired ring-opened diene 35 (Eq. 29). [Pg.182]

Unfortunately, this product was isolated as a mixture with diene 36, formed from cross-metathesis with a second equivalent of the allyl sulphide, and was contaminated with some polymeric residues. It is also important to note that an excess of the sulphide was required to suppress competing ROMP of the norbornene. A similar result was obtained for the reaction of allyl methyl sulphide with cyclop entene. [Pg.182]

Use of a symmetrical acyclic alkene limits the possible metathesis products to the desired diene (for example 45) and products formed from polymerisation of the cyclic substrate. Competing ROMP was suppressed in these reactions by using dilute conditions and a tenfold excess of hex-3-ene. By adding the cyclic substrate slowly to a solution of the catalyst and ris-hex-3-ene (which was significantly more reactive than the trans isomer), less than two equivalents of the acyclic alkene were used without causing a significant drop in the cross-metathesis yield. [Pg.185]

Only recently a selective crossed metathesis between terminal alkenes and terminal alkynes has been described using the same catalyst.6 Allyltrimethylsilane proved to be a suitable alkene component for this reaction. Therefore, the concept of immobilizing terminal olefins onto polymer-supported allylsilane was extended to the binding of terminal alkynes. A series of structurally diverse terminal alkynes was reacted with 1 in the presence of catalytic amounts of Ru.7 The resulting polymer-bound dienes 3 are subject to protodesilylation (1.5% TFA) via a conjugate mechanism resulting in the formation of products of type 6 (Table 13.3). Mixtures of E- and Z-isomers (E/Z = 8 1 -1 1) are formed. The identity of the dominating E-isomer was established by NOE analysis. [Pg.146]

J Non-Heteroatom-Substituted Carbene Complexes Table 3.21. Preparation of alkenes and dienes by cross metathesis. [Pg.164]

Table 3.22. Examples of the preparation of dienes by ring-opening cross metathesis. Table 3.22. Examples of the preparation of dienes by ring-opening cross metathesis.
Scheme 10. Olefin metathesis RCM (ring closing metathesis), ROMP (ring opening metahesis polymerization), ADMET (acyclic diene metathesis), CM (cross metathesis). Scheme 10. Olefin metathesis RCM (ring closing metathesis), ROMP (ring opening metahesis polymerization), ADMET (acyclic diene metathesis), CM (cross metathesis).
Since the alkene formed in this reaction can further react with other alkenes, many products should be formed in the cross-metathesis (CM). Therefore, in the early days, only ring-closing metathesis (RCM) of diene was investigated. It is known that the reaction is catalyzed by a transition metal. Pioneering work on olefin metathesis was undertaken by Villemin and Tsuji, who reported the synthesis of lactones using alkene metathesis ... [Pg.153]

Cross-metathesis of enynes having various functional groups on the alkyne and an alkene gives dienes having useful functional groups such as vinyl silane or enol ether as the sole product ... [Pg.195]

Cross-metathesis of terminal alkyne 142 and cyclopentene gives cyclic compound 143 having a diene moiety [Eq. (6.114)]. ° Terminal ruthenium carbene generated from an alkyne and methylidene ruthenium carbene complex reacts with cyclopentene to afford two-carbon elongated cycloheptadiene 143 ... [Pg.195]

Scheme 14 Plan for synthesis of 1,3-diene using cross-metathesis. Scheme 14 Plan for synthesis of 1,3-diene using cross-metathesis.
Acyclic dienes are the products in cross-metathesis of cycloalkenes and acyclic alkenes. With ethylene, a,co-dienes are formed ... [Pg.697]

Cross-metathesis enables the efficient preparation of acyclic alkenes and 1,3-dienes on insoluble supports (Figure 5.16). Unfortunately, some types of substrate show a high tendency to yield products of self-metathesis, i.e. symmetrical internal alkenes produced by dimerization of the resin-bound alkene. This is the case, for instance, with allylglycine and homoallylglycine derivatives. Dimerization of the resin-bound alkene can, however, be effectively suppressed by reducing the loading of the support [127]. [Pg.186]

Cross-metathesis of two different alkenes 11 and 42 usually produces a mixture of products 6 and 15. However, depending on the functional groups R1 and R2, the cross-product 6 is obtained with high selectivity rather than the homoproduct 15 from 11 and 42. Some terminal alkenes, such as allylstannane [16], acrylonitrile [17,18] and allylsilane [19], undergo clean cross-metathesis to give cross-products 6 as the main product, rather than homoproducts 15. Cross-metathesis of the cyclic alkenes 43 with terminal alkenes 42 can be used for the synthesis of dienes 44. [Pg.311]


See other pages where Dienes cross-metathesis is mentioned: [Pg.272]    [Pg.346]    [Pg.219]    [Pg.82]    [Pg.98]    [Pg.627]    [Pg.48]    [Pg.167]    [Pg.186]    [Pg.187]    [Pg.210]    [Pg.212]    [Pg.481]    [Pg.165]    [Pg.193]    [Pg.193]    [Pg.180]    [Pg.628]    [Pg.128]    [Pg.1840]    [Pg.347]    [Pg.348]    [Pg.349]   


SEARCH



Cross metathesis

Diene metathesis

Dienes metathesis

© 2024 chempedia.info