Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cresols separation

As in case of cresols, separation of individual isomers of xylenols had been a critical problem in organic chemistry. In case of cresols there are only three isomers whereas there are six isomers of xylenols and that makes it more difficult to isolate them as pure individual isomers. [Pg.9]

Fig. 1 The influence of sample volume on peak elution times for a benzyl alcohol and p-cresol separation. Fig. 1 The influence of sample volume on peak elution times for a benzyl alcohol and p-cresol separation.
Fig. 2 A mathematical prediction of the benzyl alcohol and p-cresol separation shown in Fig. 1. Fig. 2 A mathematical prediction of the benzyl alcohol and p-cresol separation shown in Fig. 1.
Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

FIGURE 13 24 The NMR spectrum of m cresol Each of the seven carbons of m cresol gives a separate peak Integrating the spectrum would not provide useful information because the intensities of the peaks are so different even though each one corresponds to a single carbon... [Pg.551]

Other Organic Processes. Solvent extraction has found appHcation in the coal-tar industry for many years, as for example in the recovery of phenols from coal-tar distillates by washing with caustic soda solution. Solvent extraction of fatty and resimic acid from tall oil has been reported (250). Dissociation extraction is used to separate y -cresol fromT -cresol (251) and 2,4-x5lenol from 2,5-x5lenol (252). Solvent extraction can play a role in the direct manufacture of chemicals from coal (253) (see Eeedstocks, coal chemicals). [Pg.79]

DifficultSepa.ra.tions, Difficult separations, characterized by separation factors in the range 0.95 to 1.05, are frequentiy expensive because these involve high operating costs. Such processes can be made economically feasible by reducing the solvent recovery load (260) this approach is effective, for example, in the separation of m- and -cresol, Hnoleic and abietic components of tall oil (qv), and the production of heavy water (see Deuteriumand TRITIUM, deuterium). [Pg.80]

Methylphenol. y -Cresol is produced synthetically from toluene. Toluene is chlorinated and the resulting chlorotoluene is hydrolyzed to a mixture of methylphenols. Purification by distillation gives a mixture of 3-methylphenol and 4-methylphenol since they have nearly identical boiling points. Reaction of this mixture with isobutylene under acid catalysis forms 2,6-di-/ f2 -butyl-4-methylphenol and 2,4-di-/ f2 -butyl-5-methylphenol, which can then be separated by fractional distillation and debutylated to give the corresponding 3- and 4-methylphenols. A mixture of 3- and 4-methylphenols is also derived from petroleum cmde and coal tars. [Pg.67]

In the case of low temperature tar, the aqueous Hquor that accompanies the cmde tar contains between 1 and 1.5% by weight of soluble tar acids, eg, phenol, cresols, and dihydroxybenzenes. Both for the sake of economics and effluent purification, it is necessary to recover these, usually by the Lurgi Phenosolvan process based on the selective extraction of the tar acids with butyl or isobutyl acetate. The recovered phenols are separated by fractional distillation into monohydroxybenzenes, mainly phenol and cresols, and dihydroxybenzenes, mainly (9-dihydroxybenzene (catechol), methyl (9-dihydtoxybenzene, (methyl catechol), and y -dihydroxybenzene (resorcinol). The monohydric phenol fraction is added to the cmde tar acids extracted from the tar for further refining, whereas the dihydric phenol fraction is incorporated in wood-preservation creosote or sold to adhesive manufacturers. Naphthalene Oils. Naphthalene is the principal component of coke-oven tats and the only component that can be concentrated to a reasonably high content on primary distillation. Naphthalene oils from coke-oven tars distilled in a modem pipe stiU generally contain 60—65% of naphthalene. They are further upgraded by a number of methods. [Pg.340]

Displacement-purge forms the basis for most simulated continuous countercurrent systems (see hereafter) such as the UOP Sorbex processes. UOP has licensed close to one hundred Sorbex units for its family of processes Parex to separate p-xylene from C3 aromatics, Molex tor /i-paraffin from branched and cyclic hydrocarbons, Olex for olefins from paraffin, Sarex for fruc tose from dextrose plus polysaccharides, Cymex forp- or m-cymene from cymene isomers, and Cresex for p- or m-cresol from cresol isomers. Toray Industries Aromax process is another for the production of p-xylene [Otani, Chem. Eng., 80(9), 106-107, (1973)]. Illinois Water Treatment [Making Wave.s in Liquid Processing, Illinois Water Treatment Company, IWT Adsep System, Rockford, IL, 6(1), (1984)] and Mitsubishi [Ishikawa, Tanabe, and Usui, U.S. Patent 4,182,633 (1980)] have also commercialized displacement-purge processes for the separation of fructose from dextrose. [Pg.1544]

The procedure of simultaneous extracting-spectrophotometric determination of nitrophenols in wastewater is proposed on the example of the analysis of mixtures of mono-, di-, and trinitrophenols. The procedure consists of extraction concentrating in an acid medium, and sequential back-extractions under various pH. Such procedures give possibility for isolation o-, m-, p-nitrophenols, a-, P-, y-dinitrophenols and trinitrophenol in separate groups. Simultaneous determination is carried out by summary light-absorption of nitrophenol-ions. The error of determination concentrations on maximum contaminant level in natural waters doesn t exceed 10%. The peculiarities of application of the sequential extractions under fixed pH were studied on the example of mixture of simplest phenols (phenol, o-, m-, />-cresols). The procedure of their determination is based on the extraction to carbon tetrachloride, subsequent back-extraction and spectrophotometric measurement of interaction products with diazo-p-nitroaniline. [Pg.126]

Di-tert-butyl-p-cresol (2,6-di-tert-butyl-4-methylphenol, butylatedhydroxytoluene, BHT) [128-37-0] M 230.4, m 71.5 , pK 12.23. Dissolved in n-hexane at room temperature, then cooled with rapid stirring, to -60°. The ppte was separated, redissolved in hexane, and the process was repeated until the mother liquor was no longer coloured. The final product was stored under N2 at 0° [Blanchard J Am Chem Soc 82 2014 7960]. Also crystd from EtOH, MeOH, benzene, n-hexane, methylcyclohexane or pet ether (b 60-80°), and dried under vacuum. [Pg.194]

The cresols occur in cresylic acid, a mixture of the three cresols together with some xylenols and neutral oils, obtained from coal tar distillates. Only the /n-cresol has the three reactive positions necessary to give cross-linked resins and so this is normally the desired material. The o-isomer is easily removed by distillation but separation of the close-boiling m- and p-isomers is difficult and so mixtures of these two isomers are used in practice. [Pg.638]

Rules are provided to aid decision making at each step. The procedure is illustrated with examples including separation of amino acids, p- and / -cresols, chorobenzoic acids, calcium carbonate and magnesium oxide from dolomite, and the production of salt. [Pg.277]

Many of the phenols which are used in household and other commercial disinfectant products are produeed from the tar obtained by distillation of coal or more recently petroleum. They are known as the tar acids. These phenols are separated by fractional distillation according to their boiling point range into phenol, cresols, xylenols and high boiling point tar acids. As the boiling point increases the properties of the products alter as shown ... [Pg.223]

Fig. 134.—Phase diagram for poly-(N,N -sebacoyl piperazine) with each of the diluents m-cresol (A), o-nitrotoluene ( ), and diphenyl ether O crystallization, O liquid-liquid separation). (Flory, Mandelkern, and Hall. )... Fig. 134.—Phase diagram for poly-(N,N -sebacoyl piperazine) with each of the diluents m-cresol (A), o-nitrotoluene ( ), and diphenyl ether O crystallization, O liquid-liquid separation). (Flory, Mandelkern, and Hall. )...
A trade-off between selectivity and solvability should be considered when selecting a solvent. Adding co-solvents can make tough separations technically and economically feasible. Lee and Gentry (1997) have tabulated dielectric constants of selected solvents. A new class of solvents is based on the use of an aqueous. solution of hydrotropes. Gaikar and Sharma (1989) have reported the separation of close-boiling p-cresol and 2,6-xylenol with aqueous solutions of hydrotropes, such as the sodium salt of p-toluene sulphonic acid, as a novel solvent in extractive distillation. [Pg.417]

In some cases we may benefit from using an external agent to carry out the desired separation through crystallization. Thus, in the case of isomeric and non-isomeric mixtures of close-boiling acidic or basic materials we may use a suitable base or acid to carry out dissociative extractive crystallization, akin to dissociative extraction referred to in Section 4.2.1. For instance, for a mixture of p- and m-cresol or p-cresol and 2,6-xylenol we may use a base like anhydrous piperazine to obtain a precipitate of relatively pure p-cresol salt of piperazine, which can then be filtered and subjected to recovery of piperazine for recycle. Similarly, we may add a substance which forms an adduct with the desired substance. [Pg.421]


See other pages where Cresols separation is mentioned: [Pg.40]    [Pg.32]    [Pg.40]    [Pg.32]    [Pg.244]    [Pg.338]    [Pg.601]    [Pg.603]    [Pg.668]    [Pg.89]    [Pg.339]    [Pg.98]    [Pg.126]    [Pg.129]    [Pg.173]    [Pg.173]    [Pg.452]    [Pg.166]    [Pg.501]    [Pg.283]    [Pg.934]    [Pg.636]    [Pg.756]    [Pg.860]    [Pg.282]    [Pg.378]    [Pg.571]    [Pg.223]    [Pg.419]    [Pg.420]    [Pg.427]    [Pg.601]    [Pg.603]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Cresol isomers, separation

Cresolic

Cresols

Separation of Meta-, Para-Cresols via Alkylation with Isobutylene

© 2024 chempedia.info