Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Counting detection limit

Distribution Amount (weight/volume), particle counts, detection limit, precision Chemical microanalysis (inorganic SEM-EDS, LA-ICP-MS, mXRF, /iXRD, XPS organic /rETIR, /rRS, XPS, ToF-SIMS, LMMS) micro-particle analysis (SALS, PCS, PMS)... [Pg.460]

In the presented work an algorithm for the primary radiation filter optimization has been developed and realized in the Mathcad envelope which provides a minimal detection limit of a critical element both at the given X-ray tube power and at the given maximal acceptable count rate. [Pg.134]

With modern detectors and electronics most Enei -Dispersive X-Ray Spectroscopy (EDS) systems can detect X rays from all the elements in the periodic table above beryllium, Z= 4, if present in sufficient quantity. The minimum detection limit (MDL) for elements with atomic numbers greater than Z = 11 is as low as 0.02% wt., if the peaks are isolated and the spectrum has a total of at least 2.5 X 10 counts. In practice, however, with EDS on an electron microscope, the MDL is about 0.1% wt. because of a high background count and broad peaks. Under conditions in which the peaks are severely overlapped, the MDL may be only 1—2% wt. For elements with Z < 10, the MDL is usually around 1—2% wt. under the best conditions, especially in electron-beam instruments. [Pg.120]

The NAA measurements on the paper samples were made at the Breazeale Nuclear Reactor Facility at the Pennsylvania State University with a TRIGA Mark III reactor at a flux of about 1013 n/cm2-sec. Samples were irradiated from 2 to 20 min and counted for 2000 sec, after a 90 min decay time for Ba and a 60 hr decay for Sb, Analyses were performed instrumentally, without radiochemical separation, using a 35cm3 coaxial Ge-Li detector and a 4096-channel pulse height analyzer. With these procedures, detection limits for Ba and Sb were 0.02ug and 0.001 ug, respectively. These sensitivities are comparable to those obtained by GA s radiochemical separation procedure, and are made possible by the use of the higher neutron output from the more powerful reactor and in combination with the higher resolution solid state detector... [Pg.376]

C22-0114. The amount of radioactive carbon in any once-living sample eventually drops too low for accurate dating. This detection limit is about 0.03/g min, whereas fresh samples exhibit a count rate of 15.3/g min. What is the upper limit for age determinations using carbon dating ... [Pg.1621]

Liquid chromatography/mass spectrometry Lower limit of detection Limit of detection Limit of quantitation Florseshoe crab hemocyanin Liquid scintillation counting Matrix-assisted laser desorption/ ionization mass spectrometry m -Maleimidobenzoy 1-A -Hydroxysuccinimide 1 -Cyclohexyl-3-(2-Morptiolino-ethyl)carbodiimide rnetlio-/ -Toluenesulfonate (same as CDI)... [Pg.12]

Figure 2. Alpha spectrum for a radium adsorbing manganese-oxide thin film exposed to a groundwater sample, after Surbeck (2000) and Eikenberg et al. (2001b). A 2x2 cm sheet is exposed to O.l-l.O L of sample for 2 days, capturing nearly all of the radium in the sample. These sample discs can be used directly for low-level alpha spectrometry without the need for further separation and preparation methods to produce planar sample sources. Energy resolution is nearly as good as for electroplated sources, and detection limits are typically 0.2 mBqA (6 fg Ra/L) for Ra and " Ra for a one-week counting period. These sensitivities are comparable to traditional methods of alpha spectrometry. [Used by permission of Elsevier Science, from Eikenberg et al. (2001), J Environ Radioact, Vol. 54, Fig. 4, p. 117]... Figure 2. Alpha spectrum for a radium adsorbing manganese-oxide thin film exposed to a groundwater sample, after Surbeck (2000) and Eikenberg et al. (2001b). A 2x2 cm sheet is exposed to O.l-l.O L of sample for 2 days, capturing nearly all of the radium in the sample. These sample discs can be used directly for low-level alpha spectrometry without the need for further separation and preparation methods to produce planar sample sources. Energy resolution is nearly as good as for electroplated sources, and detection limits are typically 0.2 mBqA (6 fg Ra/L) for Ra and " Ra for a one-week counting period. These sensitivities are comparable to traditional methods of alpha spectrometry. [Used by permission of Elsevier Science, from Eikenberg et al. (2001), J Environ Radioact, Vol. 54, Fig. 4, p. 117]...
Williams et al. (2002) have reviewed the current state of AEM X-ray microanalysis, and they suggest ways in which the highest resolution of X-ray mapping may be achieved in the STEM with an EDS spectrometer. Because of their small collection angles and thin specimens, very small numbers of X-ray counts are generated, so the minimum detection limit is typically at best 0.1 wt%. This value is an order of magnitude worse than the 0.01 wt% figure for bulk-specimen in an SEM/EPMA. [Pg.167]

Liquid scintillation counting has been used frequently for the measurement of environmental technetium. The specimens to be analyzed are treated by chemical procedures to obtain a technetium-bearing sample solution, which is mixed with a cocktail for scintillation counting. A low background scintillation counter with an anticoincidence system can be used for high precision measurements at a detection limit of 1-25 mBq. [Pg.24]

Morris [814] separated microgram amounts of vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc from 800 ml of seawater by precipitation with ammonium tetramethylenedithiocarbamate, and extraction of the chelates at pH 2.5 with methylisobutyl ketone. Solvent was removed from the extract, the residue was dissolved in 25% nitric acid, and the inorganic residue was dispersed in powdered cellulose. The mixture was pressed into a pellet for X-ray fluorescence measurements. The detection limit was 0.14 pig or better when a 10 min counting period was used. [Pg.278]

Holzbecker and Ryan [825] determined these elements in seawater by neutron activation analysis after coprecipitation with lead phosphate. Lead phosphate gives no intense activities on irradiation, so it is a suitable matrix for trace metal determinations by neutron activation analysis. Precipitation of lead phosphate also brings down quantitatively the insoluble phosphates of silver (I), cadmium (II), chromium (III), copper (II), manganese (II), thorium (IV), uranium (VI), and zirconium (IV). Detection limits for each of these are given, and thorium and uranium determinations are described in detail. Gamma activity from 204Pb makes a useful internal standard to correct for geometry differences between samples, which for the lowest detection limits are counted close to the detector. [Pg.282]

Hiraide et al. [68] used continuous flow coprecipitation-floatation for the radiochemical separation of cobalt from seawater. The 60cobalt activity was measured by liquid scintillation counting with greater than 90% yield and a detection limit of 5 fCi/1 seawater. [Pg.353]

A high-speed sensor for the assay of dimethyl sulfide in the marine troposphere based on its CL reaction with F2 was recently reported [18]. Sample air and F2 in He were introduced at opposite ends of a reaction cell with a window at one end. The production of vibrationally excited HF and electronically excited fluorohydrocarbon (FHC) produced CL emission in the wavelength range 450-650 nm, which was monitored via photon counting. Dimethyl sulfide could be determined in the 0-1200 pptv (parts per trillion by volume) concentration range, with a 4-pptv detection limit. [Pg.573]

The experimental arrangement for Raman spectroscopy is similar to that used for fluorescence experiments (see Figure 1.8), although excitation is always performed by laser sources and the detection system is more sophisticated in regard to both the spectral resolution (lager monochromators) and the detection limits (using photon counting techniques see Section 3.5). [Pg.32]

For example, a) in (radioactivity) counting experiments a non-Poisson random error component, equal in magnitude (variance) to the Poisson component, will not be detected until there are 46 degrees of freedom ( ), and b) it was necessary for a minor component in a mixed Y-ray spectrum to exceed its detection limit by -50 , before its absence was detected by lack-of-fit (x, model error) (7). [Pg.53]

Other practices which tend to underestimate the true detection limits and add confusion to the uniform evaluation of results by the public include varied (or no) treatment of interference, avoidance of systematic error bound estimation, and consideration of Poisson counting errors only. A further problem which has emerged with the prevalence of microprocessors and proprietary computer software, is the effect of hidden algorithms and inaccessible source code, so that data evaluation operations (Op) are not known to the user, and possible source code deficiences and blunders cannot be readily assessed. [Pg.57]

Trace amounts of Tc are also determined in filter paper and vegetable samples by neutron activation analysis The procedure consists of the following major steps separation of technetium from the sample, thermal neutron irradiation of the Tc fraction to produce °°Tc, post-irradiation separation and purification of °°Tc from other activated nuclides, and counting of the 16 s Tc in a low-background P counter. The estimated detection limits for Tc in this procedure are 5 x 10 g in filter paper and 9 x 10 g in vegetable samples. [Pg.134]

Dead time considerations in the alpha particle detection limit the count rate, and hence limit the neutron flux that can be used with this approach. This means that large scan times will probably be required with most implementations of this approach. [Pg.76]

The range of applicability of equation 11.122 depends on the limits of detection of in the sample. The current maximum age attained by direct radioactivity counting is about 4 X 10" a. To measure residual radioactivity, the total carbon in the sample is usually converted to CO2 and counted in the gas phase, either as purified CO2 or after further conversion to C2H2 or CH4. To enhance the amount of counted carbon, with the same detection limit (about 0.1 dpm/g), counters attain volumes of several liters and operate at several bars. More recent methods of direct detection (selective laser excitation Van de Graaif or cyclotron acceleration) has practically doubled the range of determinable ages (Muller, 1979). [Pg.766]

Polished thin sections or iron oxides grains polished in epoxy mounts were analyzed using Universite Laval CAMECA SX-100 5-VVDS electron microprobe under a beam of 15 kV at 100 nA, using a range of natural and synthetic standards. After counting over the peak for 20 to 30 sec, background is measured on both sides for 10 sec. These settings yield minimum detection limits (mdl) as low as 20 ppm for elements such as K, Ca, Al, Si, Ti and Mg, 50 ppm for Mn, Cr and V, 200 ppm for Cu,... [Pg.7]


See other pages where Counting detection limit is mentioned: [Pg.437]    [Pg.182]    [Pg.581]    [Pg.617]    [Pg.674]    [Pg.34]    [Pg.437]    [Pg.50]    [Pg.51]    [Pg.63]    [Pg.666]    [Pg.313]    [Pg.24]    [Pg.202]    [Pg.116]    [Pg.189]    [Pg.133]    [Pg.238]    [Pg.459]    [Pg.28]    [Pg.168]    [Pg.427]    [Pg.205]    [Pg.44]    [Pg.31]    [Pg.380]    [Pg.169]    [Pg.276]    [Pg.122]    [Pg.479]   


SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

© 2024 chempedia.info