Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion testing accelerated

Sa.lt Spray Tests. One of the older accelerated corrosion tests is the salt spray test (40). Several modifications of this imperfect test have been proposed, some of which are even specified for particular appHcations. The neutral salt spray test persists, however, especially for coatings that are anodic to the substrate and for coatings that are dissolved or attacked by neutral salt fog. For cathodic coatings, such as nickel on steel, the test becomes a porosity test, because nickel is not attacked by neutral salt fog. Production specifications that call for 1000 hours salt spray resistance are not practical for quahty acceptance tests. In these cases, the neutral salt spray does not qualify as an accelerated test, and faster results from different test methods should be sought. [Pg.151]

The CASS Test. In the copper-accelerated acetic acid salt spray (CASS) test (42), the positioning of the test surface is restricted to 15 2°, and the salt fog corrosivity is increased by increasing temperature and acidity, pH about 3.2, along with the addition of cupric chloride dihydrate. The CASS test is used extensively by the U.S. automobile industry for decorative nickel—chromium deposits, but is not common for other deposits or industries. Exposure cycle requirements are usually 22 hours, rarely more than 44 hours. Another corrosion test, now decreasing in use, for decorative nickel—chromium finishes is the Corrodkote test (43). This test utilizes a specific corrosive paste combined with a warm humidity cabinet test. Test cycles are usually 20 hours. [Pg.151]

Corrosion tests of metals under static conditions reveal nothing relating to erosion-corrosion susceptibilities. It is entirely possible that a metal tested under static conditions will fail in service when sufficient fluid velocity produces erosion-corrosion. Similarly, it has been observed that galvanic corrosion between coupled, dissimilar metals may be accelerated or even initiated under flow conditions when little or no galvanic corrosion is observed under static conditions (see Chap. 16, Galvanic Corrosion ). [Pg.251]

The condition of the test metal is important. Clean metal samples with uniform finishes are preferred. The accelerating effects of surface defects lead to deceptive results in samples. The ratio of the area of a defect to the total surface area of the metal is much higlier in a sample than in any metal in service. This is an indication of the inaccuracy of tests made on metals with improper finishes. The sample metal should have the same type of heat treatment as the metal to be used in service. Different heat treatments have different effects on corrosion. Heat treatment may improve or reduce the corrosion resistance of a metal in an unpredictable manner. For the purpose of selectivity, a metal stress corrosion test may be performed. General trends of the performance of a material can be obtained from such tests however, it is difficult to reproduce the stress that actually will occur during service. [Pg.19]

Wilde, B. E. and Williams, E., On the Correspondence Between Electrochemical and Chemical Accelerated Pitting Corrosion Tests , J. Electrochem. Soc., 117, 775 (1970)... [Pg.206]

Alloys containing only a few per cent of zinc may fail if the stresses are high and the environment sufficiently corrosive. Most types of brass, besides the plain copper/zinc alloys, appear to be susceptible to stress corrosion. An extensive investigation of the effect of additions to 70/30 brass was carried out by Wilson, Edmunds, Anderson and Peirce , who found that about 1% Si was markedly beneficial. Other additions were beneficial under some circumstances and none of the 36 additions tested accelerated stress-corrosion cracking. Further results are given in later papers ... [Pg.705]

All testing has to be related to environmental conditions whose characteristics must be defined. The relation of accelerated corrosion test condition to real service conditions is one aspect while another is defining classes of environment and relating them to characteristic corrosion performance in order to produce useful specification guidelines. BS5493 1977 is an attempt to do this using four categories appropriate primarily to the UK (Table 13.2). Such a classification is clearly an over-simplification, but represents an important step in this particular direction. [Pg.462]

As an undercoating for chromium, i.e. in place of nickel, copper is not to be recommended. On the other hand, both accelerated and outdoor corrosion tests have shown that a tin-bronze deposit, containing 80-90% copper, is considerably better for this purpose and it has been claimed to be approximately equal to nickel in this respect. [Pg.520]

Since the corrosion resistance of anodic films on aluminium is markedly dependent on the efficacy of sealing (provided the film thickness is adequate for the service conditions), tests for sealing quality are frequently employed as an index of potential resistance to corrosion. While it is admitted that an unequivocal evaluation of corrosion behaviour can only be obtained by protracted field tests in service, accelerated corrosion tests under closely controlled conditions can also provide useful information in a shorter time within the limitations of the particular test environment employed. [Pg.698]

Exposure of the samples to a controlled moist atmosphere containing sulphur dioxide, as recommended in BS 1615 1972, Method H, is an example of a test bridging the gap between sealing tests and accelerated corrosion tests. After exposure for 24 h at 25 2°C, poorly sealed films show a persistent heavy white bloom, while good sealing produces at the most a slight superficial bloom. [Pg.698]

The accelerated corrosion test in most general use is the CASS test in which the articles are sprayed intermittently with a solution made up as follows ... [Pg.699]

The most widely used accelerated tests are based on salt spray, and are covered by several Government Specifications. BS 1391 1952 (recently withdrawn) gives details of a hand-atomiser salt-spray test which employs synthetic sea-water and also of a sulphur-dioxide corrosion test. A continuous salt-spray test is described in ASTM B 117-61 and BS AU 148 Part 2(1969). Phosphate coatings are occasionally tested by continuous salt spray without a sealing oil film and are expected to withstand one or two hours spray without showing signs of rust the value of such a test in cases where sealing is normally undertaken is extremely doubtful. [Pg.716]

In view of the electrochemical nature of corrosion, it has seemed reasonable to many investigators to assume that suitable accelerated corrosion tests could be made by observing the response to electrolytic stimulation of the corrosion processes, or by attaching particular significance to the results of quickly made electrode potential and current measurements. [Pg.1020]

Specification for electroplated coatings of 65/35 tin/nickel alloy Method for the evaluation of results of accelerated corrosion tests on metallic coatings Methods of test for paints Cross-cut test Pull-off test for adhesion Resistance to artificial weathering (enclosed carbon arc) and Addendum No. 1 Resistance to continuous salt spray Notes for guidance on the conduct of natural weathering test... [Pg.1096]

Test method for iron chip corrosion test for water soluble metalworking fluids Test method for accelerated weathering test conditions and procedures for bituminous materials (xenon-arc method)... [Pg.1100]

Sharma et al. [153] have devised a gentle accelerated corrosion test using a kinetic rate equation to establish appropriate acceleration factors due to relative humidity and thermal effects. Using an estimate for the thermal activation energy of 0.6 eV and determining the amount of adsorbed water by a BET analysis on Au, Cu and Ni, they obtain an acceleration factor of 154 at 65°C/80% RH with respect to 25 °C/35-40% RH. [Pg.278]

Accelerated Corrosion Tests. There are as many as a dozen methods (salt fog, Kesternich, etc.) that are currently being used to investigate corrosion resistance of coating systems and a need to develop a better and more dependable method to predict in-use service. A severe drawback of all these tests is that their results often compare unsatisfactorily with practical experience. One reason for the discrepancies is assumed to be the variability of natural exposure conditions. Accordingly, cyclic testing procedures have been developed with which exposure conditions, especially temperature and humidity. [Pg.87]

Almost all tests carried out to study the starting process of atmospheric corrosion have been performed in a surface without corrosion products however, in real conditions, the metal is covered with corrosion products after a given time and these products begin to play its role as retarders of the corrosion process in almost all cases. Corrosion products acts as a barrier for oxygen and contaminants diffusion, the free area for the occurrence of the corrosion is lower however, the formation of the surface electrolyte is enhanced. Only in very polluted areas the corrosion products accelerate the corrosion process. Water adsorption isoterms were determined to corrosion products formed in Cuban natural atmospheres[21]. Sorption properties of corrosion products (taking into account their salt content-usually hygroscopics) determine the possibilities of surface adsorption and the possibility of development of corrosion process... [Pg.65]

In general corrosion is accelerated by an increase in temperature with the exception when dissolved oxygen is the corrosive agent. Careful control of temperature in corrosion testing is mandatory. Sometimes high temperatures are used in accelerated corrosion tests. [Pg.110]

If suitable field sites are not available or lack controlled conditions, then corrosion tests must be conducted in the laboratory. Cabinets are constructed in which the atmosphere is controlled and high humidity and temperature can be used to help accelerate the tests. Marine environments are simulated by salt spray and industrial environments by sulphur dioxide or nitrogen dioxide. Figure 18 shows a salt-spray cabinet and the arrangement of test panels. Periodic changes of temperature within the cabinet can be used to simulate night and day. Addition of other aggressive salts or acid into the sprayed solution is further used to accelerate the test. [Pg.266]


See other pages where Corrosion testing accelerated is mentioned: [Pg.227]    [Pg.227]    [Pg.223]    [Pg.157]    [Pg.198]    [Pg.1034]    [Pg.1365]    [Pg.317]    [Pg.530]    [Pg.1021]    [Pg.1025]    [Pg.1026]    [Pg.1026]    [Pg.1103]    [Pg.294]    [Pg.271]    [Pg.276]    [Pg.186]    [Pg.88]    [Pg.95]    [Pg.213]    [Pg.390]    [Pg.395]    [Pg.398]    [Pg.157]    [Pg.91]    [Pg.255]   
See also in sourсe #XX -- [ Pg.19 , Pg.25 , Pg.46 , Pg.48 ]

See also in sourсe #XX -- [ Pg.19 , Pg.25 , Pg.46 , Pg.48 ]




SEARCH



Accelerated corrosion test definition

Accelerated cyclic corrosion test

Accelerated testing

Atmospheric corrosion accelerated tests

Corrosion corrosivity tests

Corrosion test, accelerated

Corrosion test, accelerated

Corrosion testing

Corrosion testing accelerated weathering steels

Corrosion tests

Corrosivity test

© 2024 chempedia.info