Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion mixed electrodes

In general, according to Eq. (2-10), two electrochemical reactions take place in electrolytic corrosion. In the experimental arrangement in Fig. 2-3, it is therefore not the I(U) curve for one reaction that is being determined, but the total current-potential curve of the mixed electrode, E,. Thus, according to Eq. (2-10), the total potential curve involves the superposition of both partial current-potential curves ... [Pg.44]

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

Fig. 2-5 Partial and total current densities in electrolytic corrosion of a homogeneous mixed electrode. Fig. 2-5 Partial and total current densities in electrolytic corrosion of a homogeneous mixed electrode.
Figure 4-3a indicates the ideal case of a mixed electrode in free corrosion. Such situations do not arise in soils or aqueous media. Usually the attack is locally nonuniform (see Fig. 4-3b) in which the current balance is not equalized at small regions along the surface. This is a case of free corrosion without extended corro-... [Pg.142]

Corrosion is a mixed-electrode process in which parts of the surface act as cathodes, reducing oxygen to water, and other parts act as anodes, with metal dissolution the main reaction. As is well known, iron and ferrous alloys do not dissolve readily even though thermodynamically they would be expected to, The reason is that in the range of mixed potentials normally encountered, iron in neutral or slightly acidic or basic solutions passivates, that is it forms a layer of oxide or oxyhydroxide that inhibits further corrosion. [Pg.326]

Further, these anodic and cathodic reactions can occur spatially at adjacent locations on the stuface of a metal electrode rather than on two separated metal electrodes as shown in Fig. 11-1, where the anodic dissolution of iron and the cathodic reduction of hydrogen ions proceed simultaneously on an iron electrode in aqueous solution. The electrons produced in the anodic dissolution of iron are the same electrons involved in the cathodic reduction of hydrogen ions hence, the anodic reaction cannot proceed more rapidly than that the electrons can be accepted by the cathodic reaction and vice versa. Such an electrode at which a pair of anodic and cathodic reactions proceeds is called the mixed electrode . For the mixed electrodes, the anode (current entrance) and the cathode (current exit) coexist on the same electrode interface. The concept of the mixed electrode was first introduced in the field of corrosion science of metals [Evans, 1946 Wagner-Traud, 1938]. [Pg.373]

Fig. 11-1. Mixed electrode model (local cell model) for corrosion of metals i = anodic current for transfer of iron ions i = cathodic current of electron transfer for reduction of hydrogen ions. Fig. 11-1. Mixed electrode model (local cell model) for corrosion of metals i = anodic current for transfer of iron ions i = cathodic current of electron transfer for reduction of hydrogen ions.
Fig. 11-2. Electron energy leveb for a mixed electrode reaction of iron corrosion in acidic solution = Fermi level of iron electrode Sfw/hj) = Fermi level of hydrogen redox... Fig. 11-2. Electron energy leveb for a mixed electrode reaction of iron corrosion in acidic solution = Fermi level of iron electrode Sfw/hj) = Fermi level of hydrogen redox...
The potential of a mixed electrode at which a coupled reaction of charge transfer proceeds is called the mixed electrode potential , this mixed electrode potential is obviously different from the single electrode potential at which a single reaction of charge transfer is at equilibrium. For corroding metal electrodes, as shown in Fig. 11—2, the mixed potential is often called the corrosion potential, E . At this corrosion potential Eemt the anodic transfer current of metallic ions i, which corresponds to the corrosion rate (the corrosion current ), is exactly balanced with the cathodic transfer current of electrons for reduction of oxidants (e.g. hydrogen ions) i as shown in Eqn. 11-4 ... [Pg.377]

Fig. 11-14. (a) Corrosion rate of metallic iron in nitric acid solution as a function of concentration of nitric add and (b) schematic polarization curves for mixed electrode reaction of a corroding iron in nitric add W p, = iron corrosion rate CHNO3 = concentration of nitric add t" (t ) = current of anodic iron dissolution (cathodic nitric add reduction) dashed curve 1= cathodic current of reduction of nitric add in dilute solution dashed ciuve 2 s cathodic current of reduction of nitric add in concentrated solution. [From Tomashov, 1966 for (a).]... [Pg.387]

Wagner and Traud [141] developed the theory of mixed potentials in order to explain the corrosion of electrode surfaces. This theory assumes that the measurable current—potential curves for an electrode where more than one electrochemical reaction takes place simultaneously is represented by... [Pg.68]

Considerable progress has been made during the past decade toward a better insight into the basic concepts and mechanism involved in metallic dissolution and corrosion. More emphasis has been placed on the "fundamental particles (metallic ions, electrons, and electron acceptors) and on the use of current-voltage characteristics. The wide recognition of dissolution and corrosion as electrode processes, and the idea of a polyelectrode exhibiting a mixed potential, have augmented the use of electrochemical techniques in the study and interpretation of corrosion phenomena. There is even some evidence that the phenomenon of passivity may soon be clarified. [Pg.327]

Solid materials, in general, are more or less subject to corrosion in the environments where they stand, and materials corrosion is one of the most troublesome problems we have been frequently confronted with in the current industrialized world. In the past decades, corrosion science has steadily contributed to the understanding of materials corrosion and its prevention. Modem corrosion science of materials is rooted in the local cell model of metallic corrosion proposed by Evans [1] and in the mixed electrode potential concept of metallic corrosion proved by Wagner and Traud [2]. These two magnificent achievements have combined into what we call the electrochemical theory of metallic corrosion. It describes metallic corrosion as a coupled reaction of anodic metal dissolution and cathodic oxidant reduction. The electrochemical theory of corrosion can be applied not only to metals but also to other solid materials. [Pg.532]

If two or more electrochemical half-cell reactions can occur simultaneously at a metal surface, the metal acts as a mixed electrode and exhibits a potential relative to a reference electrode that is a function of the interaction of the several electrochemical reactions. If the metal can be considered inert, the interaction will be between species in the solution that can be oxidized by other species, which, in turn, will be reduced. For example, ferrous ions can be oxidized to ferric ions by dissolved oxygen and the oxygen reduced to water, the two processes occurring at different positions on the inert metal surface with electron transfer through the metal. If the metal is reactive, oxidation (corrosion) to convert metal to ions or reduction of ions in solution to the neutral metal introduces additional electrochemical reactions that contribute to the mixed electrode. [Pg.127]

The conventional approach to corrosion is to start directly with the concept of a mixed electrode of indistinguishable distribution of sites for the anodic and cathodic reactions. The approach taken in this chapter is to first examine the behavior of distinguishable anodic and cathodic sites. This is the classical case of galvanic couples of joined dissimilar metals in contact with a common solution. In this case, local movement of a reference electrode through the solution can map the... [Pg.128]

The cathode-to-anode area ratio is frequently a critical factor in corrosion. (This is true when well-defined cathodes and anodes exist. With mixed electrode behavior, where cathodic and anodic reactions occur simultaneously, separate areas are not readily distinguishable, and Aa is assumed equal to Ac.) Discussion of the influence of this ratio will be restricted to the case of a small total-corrosion-circuit resistance leading to the anodic and cathodic reactions occurring at essentially the same potential, Ecorr, as described previously. In Fig. 4.12, three different values of corrosion current, Icorr, and corrosion potential, Ecorr, are shown for three cathode areas relative to a fixed anode area of 1 cm2. For these cases, a reference electrode placed anywhere in the solution... [Pg.149]

The earlier sections of this chapter discuss the mixed electrode as the interaction of anodic and cathodic reactions at respective anodic and cathodic sites on a metal surface. The mixed electrode is described in terms of the effects of the sizes and distributions of the anodic and cathodic sites on the potential measured as a function of the position of a reference electrode in the adjacent electrolyte and on the distribution of corrosion rates over the surface. For a metal with fine dispersions of anodic and cathodic reactions occurring under Tafel polarization behavior, it is shown (Fig. 4.8) that a single mixed electrode potential, Ecorr, would be measured by a reference electrode at any position in the electrolyte. The counterpart of this mixed electrode potential is the equilibrium potential, E M (or E x), associated with a single half-cell reaction such as Cu in contact with Cu2+ ions under deaerated conditions. The forms of the anodic and cathodic branches of the experimental polarization curves for a single half-cell reaction under charge-transfer control are shown in Fig. 3.11. It is emphasized that the observed experimental curves are curved near i0 and become asymptotic to E M at very low values of the external current. In this section, the experimental polarization of mixed electrodes is interpreted in terms of the polarization parameters of the individual anodic and cathodic reactions establishing the mixed electrode. The interpretation then leads to determination of the corrosion potential, Ecorr, and to determination of the corrosion current density, icorr, from which the corrosion rate can be calculated. [Pg.150]

In review, consider a mixed electrode at which one net reaction is the transfer of metal to the solution as metal ions, and the other net reaction is the reduction of chemical species in the solution such as H+, 02, Fe3+, or N02 on the metal surface. For purposes of the present discussion, no attempt is made to define the individual sites for the anodic (net oxidation) and cathodic (net reduction) reactions. They may be homogeneously distributed, resulting in uniform corrosion, or segregated, resulting in localized corrosion. In the latter case, the cathode-to-anode area ratio is of practical importance in determining the rate of penetration at anodic areas. [Pg.151]

The above analysis of a mixed electrode in terms of the current components is usually simplified under several common, and often very accurate, assumptions. With reference to Fig. 4.13, if the intersection of the I0X and the Ired lines occurs at a potential, Ecorr, that deviates by more than approximately 50 mV from both equilibrium potentials, E x and E m, the contributions of I0 x and Ired M become insignificant, and the analysis of the corrosion is based on the intersection of the Ired x and Iox M lines. These individual Tafel lines are plotted (dashed lines) in Fig. 4.15. Ecorr and Icorr are identified, again assuming that Rtotai is very small. [Pg.155]

The concepts in Chapters 2 and 3 are used in Chapter 4 to discuss the corrosion of so-called active metals. Chapter 5 continues with application to active/passive type alloys. Initial emphasis in Chapter 4 is placed on how the coupling of cathodic and anodic reactions establishes a mixed electrode or surface of corrosion cells. Emphasis is placed on how the corrosion rate is established by the kinetic parameters associated with both the anodic and cathodic reactions and by the physical variables such as anode/cathode area ratios, surface films, and fluid velocity. Polarization curves are used extensively to show how these variables determine the corrosion current density and corrosion potential and, conversely, to show how electrochemical measurements can provide information on the nature of a given corroding system. Polarization curves are also used to illustrate how corrosion rates are influenced by inhibitors, galvanic coupling, and external currents. [Pg.492]

Another example of a galvanic cell reaction is provided by open circuit corrosion of the metal deposit. Freshly deposited (and particularly finely-divided) metals are more active than their bulk, compact counter parts. Corrosion of the mixed electrode deposit may ensue if the cathode surface is left under open circuit conditions metal dissolution is balanced via reduction of species such as dissolved oxygen, protons or higher oxidation states of transition metal ions. Illustrative (simplified) examples of such oxidising agents include the following ... [Pg.14]

This system permits brief descriptions of some key concepts encountered in corrosion phenomena electrode potentials, exchange currents, mixed potentials, corrosion potentials, passive films, as well as leading to thermodynamic descriptions of systems.- ... [Pg.14]

As an alternative to generating an entire polarization diagram, we can use the exchange current densities and the equilibrium potentials of the anodic and cathodic reactions to estimate the corrosion potential and corrosion current by extrapolating the cathodic and anodic polarization lines of the corroding system. At the corrosion potential, the anodic and cathodic currents are equal. The schematic shown in Fig. 3.6 represents a case for which the anode and the cathode area are the same once the corrosion current is known, the rate of deterioration of the electrode can be estimated. The accurate prediction of the corrosion (mixed) potential depends on the polarization behavior of the specific electrode. [Pg.115]

L. I. Antropov, Theoretical Electrochemistry, Translated from Russian, MIR Publishers, Moscow, 1972. C. Wagner, W. Traud, On the interpretation of corrosion processes through superposition of electrochemical partial processes and on the potential of mixed electrodes, Z. Elektrochem. 44 (1938)... [Pg.142]

Standards define uniform surface corrosion as corrosion practically equal to mass loss over the entire surface (homogeneous mixed electrode), and nonuniform corrosion (shallow pit formation) as corrosion with locally different mass losses. [Pg.550]

The cause of nonuniform corrosion is the presence of corrosion elements, that is, heterogeneous mixed electrodes. The common feature of both types of corrosion is the geometry of the damaged area. The surface spread of these areas is generally greater than the depth. Accordingly, compared with localized types of corrosion such as pitting, these types of corrosion are limited in extent. [Pg.550]

Wagner, C., and W. Traud. 1938. The interpretation of corrosion phenomena by super-imposition of electrochemical partial reactions and the formation of potentials of mixed electrodes. Zeitschrift finer Elektrochemie und Angewandte Physikalische Chemie 44 391. [Pg.1638]


See other pages where Corrosion mixed electrodes is mentioned: [Pg.46]    [Pg.47]    [Pg.48]    [Pg.90]    [Pg.577]    [Pg.128]    [Pg.129]    [Pg.133]    [Pg.140]    [Pg.538]    [Pg.46]    [Pg.46]    [Pg.47]    [Pg.48]    [Pg.50]    [Pg.90]   
See also in sourсe #XX -- [ Pg.44 , Pg.51 ]

See also in sourсe #XX -- [ Pg.44 , Pg.51 ]




SEARCH



Corrosion potential mixed electrodes

Electrodes mixed

Localized corrosion mixed electrodes

Uniform corrosion mixed electrodes

© 2024 chempedia.info