Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion in aqueous solutions and soil

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

Both partial reactions are stimulated on uncovered areas of the metal surface. Coverage of such a region is determined by whether the corrosion product is formed actually on the metal surface or whether it arises initially as solid oxide at some [Pg.139]

Very high pH values are necessary for the reaction in Eq. (4-1), which can only arise as a result of cathodic polarization according to Eq. (2-19) (see Fig. 2-11). No protective films are formed on Fe due to the relatively high solubility of Fe(OH)2, although further oxidation produces solid films  [Pg.140]

The oxidation products are almost insoluble and lead to the formation of protective films. They promote aeration cells if these products do not cover the metal surface uniformly. Ions of soluble salts play an important role in these cells. In the schematic diagram in Fig. 4-1 it is assumed that from the start the two corrosion partial reactions are taking place at two entirely separate locations. This process must quickly come to a complete standstill if soluble salts are absent, because otherwise the ions produced according to Eqs. (2-21) and (2-17) would form a local space charge. Corrosion in salt-free water is only possible if the two partial reactions are not spatially separated, but occur at the same place with equivalent current densities. The reaction products then react according to Eq. (4-2) and in the subsequent reactions (4-3a) and (4-3b) to form protective films. Similar behavior occurs in salt-free sandy soils. [Pg.140]

In the presence of dissolved ions, the ion charge at the metal surface can be neutralized by the migration of the counter-ions to the reaction site. The following reactions take place  [Pg.140]


Heim M, Schwenk W. Corrosion in aqueous solutions and soil. In von Baeckmarm W, Schwenk W, Prinz W, eds. Handbook of Cathodic Protection. 1997 139-52. [Pg.428]

On the other hand, it can be assumed for the oxygen corrosion of steel in aqueous solutions and soils that there is a constant minimum protection current density, 4, in the protective range, U limiting current density for oxygen reduction according to Eq. (4-5) (see Section 2.2.3.2). Then it follows, with V = +1,1 = 2nr, S = 27crs and d = dU from Eq. (24-54), instead of Eq. (24-58) [12-14] ... [Pg.554]

Due to the wide range of condition for corrosion occurring, there are many tests to evaluate corrosion. These tests include the study of atmospheric corrosion, corrosion during episodic wet/dry conditions, corrosion under fully immersed conditions, corrosion in soil, corrosion in aqueous solutions and corrosion in non-aqueous solutions and in molten salts. Moreover, it is important to consider the in-service environment and the objectives of the tests being performed. [Pg.527]

The processes of cathodic protection can be scientifically explained far more concisely than many other protective systems. Corrosion of metals in aqueous solutions or in the soil is principally an electrolytic process controlled by an electric tension, i.e., the potential of a metal in an electrolytic solution. According to the laws of electrochemistry, the reaction tendency and the rate of reaction will decrease with reducing potential. Although these relationships have been known for more than a century and although cathodic protection has been practiced in isolated cases for a long time, it required an extended period for its technical application on a wider scale. This may have been because cathodic protection used to appear curious and strange, and the electrical engineering requirements hindered its practical application. The practice of cathodic protection is indeed more complex than its theoretical base. [Pg.582]

Aqueous environments will range from very thin condensed films of moisture to bulk solutions, and will include natural environments such as the atmosphere, natural waters, soils, body fluids, etc. as well as chemicals and food products. However, since environments are dealt with fully in Chapter 2, this discussion will be confined to simple chemical solutions, whose behaviour can be more readily interpreted in terms of fundamental physicochemical principles, and additional factors will have to be considered in interpreting the behaviour of metals in more complex environments. For example, iron will corrode rapidly in oxygenated water, but only very slowly when oxygen is absent however, in an anaerobic water containing sulphate-reducing bacteria, rapid corrosion occurs, and the mechanism of the process clearly involves the specific action of the bacteria see Section 2.6). [Pg.55]

In principle, cathodic protection can be used for a variety of applications where a metal is immersed in an aqueous solution of an electrolyte, which can range from relatively pure water to soils and to dilute solutions of acids. Whether the method is applicable will depend on many factors and, in particular, economics — protection of steel immersed in a highly acid solution is theoretically feasible but too costly to be practicable. It should be emphasised that as the method is electrochemical both the structure to be protected and the anode used for protection must be in both metallic and electrolytic contact. Cathodic protection cannot therefore be applied for controlling atmospheric corrosion, since it is not feasible to immerse an anode in a thin condensed film of moisture or in droplets of rain water. [Pg.199]

The relationship of anode current density with electrode potential for mild steel in dilute aqueous soil electrolytes has been studied by Hoar and Farrer. The study shows that in conditions simulating the corrosion of mild steel buried in soil the logarithm of the anode current density is related approximately rectilinearly to anode potential, and the increase of potential for a ten-fold increase of current density in the range 10 to 10 A/cm is between 40 and 65 mV in most conditions. Thus a positive potential change of 20 mV produces a two- to three-fold increase in corrosion rate in the various electrolyte and soil solutions used for the experiments. [Pg.238]

The inherent instability of sulfur-infiltrated concrete in aqueous media illustrated in this study may be the most important factor in utilization, because it will affect long-term durability of the concrete in many natural settings. The Ca(OH)2 produced by the hydration of portland cement is a principal reactant in the leaching process, and while it remains sulfur could be extracted, leaving the matrix vulnerable to other destructive processes. The removal rate of sulfur will vary greatly, depending mostly upon the pH of the immersion medium thus, the concrete deteriorates in alkaline sulfatic soils but is relatively stable in the corrosive neutral sulfatic solutions from the sodium sulfate plant. [Pg.102]

Cleaning metals will remove oily soils but will generally not remove rust and corrosion from substrates to be coated. Abrasive cleaning wiU remove corrosion products, and for this reason it is also considered a pretreatment, because the impingement of blasting media and the action of abrasive pads and brushes roughen the substrate and therefore enhance adhesion. The other pretreatments use aqueous chemical solutions, which are apphed by immersion or spray techniques. Pretreatments for metallic substrates used on industrial products are discussed in this section. Because they provide corrosion protection to fer-... [Pg.351]


See other pages where Corrosion in aqueous solutions and soil is mentioned: [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.139]    [Pg.139]    [Pg.183]    [Pg.9]    [Pg.183]    [Pg.642]    [Pg.102]    [Pg.380]    [Pg.47]    [Pg.629]    [Pg.37]    [Pg.102]    [Pg.242]    [Pg.836]    [Pg.124]    [Pg.48]    [Pg.238]    [Pg.707]    [Pg.600]   


SEARCH



Aqueous Solutions and Soil

Aqueous corrosion

Corrosion in aqueous solutions

Corrosion solutions

Soil solution

Solutes soils

© 2024 chempedia.info