Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion galvanisation

Galvanised steel pipes Threaded mild-steel tube is the cheapest material for water pipes, but it is not normally used owing to the amount of rust introduced into the water as a result of corrosion. Galvanised mild-steel tube overcomes this problem and may be used for nearly all hard waters, but it is not satisfactory for soft waters or those having a high free-carbon-dioxide content. The ability of a water to form a scale is, therefore, of prime importance when considering the suitability of galvanised steel for an installation. [Pg.56]

Because of its resistance to corrosion, zinc may be used to coat iron. This may be done by dipping the iron into molten zinc or by spraying zinc on the iron articles, for example iron sheets. This is known as galvanising. Smaller iron articles may be coated by heating with zinc dust, a process known as sherardising, or suspensions of zinc may be used in paints. [Pg.418]

How does galvanising work As Fig. 24.4 shows, the galvanising process leaves a thin layer of zinc on the surface of the steel. This acts as a barrier between the steel and the atmosphere and although the driving voltage for the corrosion of zinc is greater than that for steel (see Fig. 23.3) in fact zinc corrodes quite slowly in a normal urban atmosphere because of the barrier effect of its oxide film. The loss in thickness is typically 0.1 mm in 20 years. [Pg.234]

A note of caution about roof fasteners. A common mistake is to fix a galvanised or aluminium roof in place with nails or screws of a different metal copper or brass, for instance. The copper acts as cathode, and the zinc or aluminium corrodes away rapidly near to the fastening. A similar sort of goof has been known to occur when copper roofing sheet has been secured with steel nails. As Fig. 24.6 shows, this sort of situation leads to catastrophically rapid corrosion not only because the iron is anodic, but because it is so easy for the electrons generated by the anodic corrosion to get away to the large copper cathode. [Pg.236]

Under aggressive corrosion conditions it is estimated that the maximum corrosion current density in a galvanised steel sheet will be 6 X 10 A m . Estimate the thickness of the galvanised layer needed to give a rust-free life of at least 5 years. The density of zinc is 7.13 Mg m , and its atomic weight is 65.4. Assume that the zinc corrodes to give Zn " ions. [Pg.289]

Zinc coatings on steel (galvanised) are attacked in the same way Jis iron, but usually more slowly. Very alkaline waters are usually aggressive to zinc and will often remove galvanised coatings the corrosion products consist of basic zinc carbonate or other basic compounds and may take the form of a thick creamy deposit or hard abrjisive particles. [Pg.358]

This type of corrosion can take place on any new surface of zinc and is best prevented by storing the metal in a dry, airy place until a protective layer has been formed. Zinc which has been properly aged in this way is safe against white-rust formation. Various methods are employed to prevent white rust. A chromate treatment is widely used for zinc-plated articles and for galvanised sheet, and occasionally for zinc die castings. Fatty substances, such as oils or lanolin, are sometimes used to protect larger items. [Pg.818]

The effect of pH on the corrosion of zinc has already been mentioned (p. 4.170). In the range of pH values from 5 -5 to 12, zinc is quite stable, and since most natural waters come within this range little difficulty is encountered in respect of pH. The pH does, however, affect the scale-forming properties of hard water (see Section 2.3 for a discussion of the Langelier index). If the pH is below the value at which the water is in equilibrium with calcium carbonate, the calcium carbonate will tend to dissolve rather than form a scale. The same effect is produced in the presence of considerable amounts of carbon dioxide, which also favours the dissolution of calcium carbonate. In addition, it is important to note that small amounts of metallic impurities (particularly copper) in the water can cause quite severe corrosion, and as little as 0-05 p.p.m. of copper in a domestic water system can be a source of considerable trouble with galvanised tanks and pipes. [Pg.819]

BISRA tests on galvanised steel pipe buried for five years at five different sites are described by Hudson and Acock The galvanised pipes resisted corrosion rather better than steel at all sites. Galvanised pipes of small diameter are frequently used to provide underground water services in farms and similar establishments, and little trouble is experienced. [Pg.820]

The corrosion of painted mild-steel window frames is often troublesome, especially on horizontal members where moisture tends to collect. This effect can be reduced by bevelling the edges with putty before painting, to help drainage. It is preferable, however, to use more resistant materials such as galvanised steel, stainless steel or aluminium for window frames. [Pg.45]

Vast amounts of continuously galvanised steel sheets are produced, and unless they are painted or otherwise coated, their life depends on the thickness of the galvanising and the service environment in which they are used. Similarly in the case of steel sheets coated with aluminium or aluminium-zinc alloys, their performance is dictated by their coating thickness (see Section 13.4). A problem often associated with such material is corrosion at the cut edges. From work carried out by BISRA and others it has been shown that providing the bare steel edge is less than 3 mm in width, the amount of corrosion is minimal and the life of the sheet is not adversely... [Pg.47]

Zinc in contact with wood Zinc is not generally affected by contact with seasoned wood, but oak and, more particularly, western red cedar can prove corrosive, and waters from these timbers should not drain onto zinc surfaces. Exudations from knots in unseasoned soft woods can also affect zinc while the timber is drying out. Care should be exercised when using zinc or galvanised steel in contact with preservative or fire-retardant-treated timber. Solvent-based preservatives are normally not corrosive to zinc but water-based preservatives, such as salt formulated copper-chrome-arsenic (CCA), can accelerate the rate of corrosion of zinc under moist conditions. Such preservatives are formulated from copper sulphate and sodium dichromate and when the copper chromium and arsenic are absorbed into the timber sodium sulphate remains free and under moist conditions provides an electrolyte for corrosion of the zinc. Flame retardants are frequently based on halogens which are hygroscopic and can be aggressive to zinc (see also Section 18.10). [Pg.52]

Galvanised steel provides increased corrosion resistance in carbonated concrete. In concrete with more than 0.4% chloride ion with respect to the cement content, there is an increased risk of corrosion and at high chloride contents the rate of corrosion approaches that of plain carbon steel. In test conditions the rate of corrosion is greater in the presence of sodium chloride than calcium chloride. Fusion-bonded epoxy-coated steel performs well in chloride-contaminated concrete up to about 3.9% chloride ion in content. [Pg.55]

Galvanised steelwork buried in the soil in the form of service pipes or structural steelwork withstands attack better than bare steel, except when the soil is more alkaline than pH 9-4 or more acid than pH 2-6. Poorly aerated soils are corrosive to zinc, although they do not necessarily cause pitting. However, soils with fair to good aeration containing high concentrations of chlorides and sulphates may do so. Bare iron may be attacked five... [Pg.58]

Zinc diffusion sherardisingY " is mainly used for protection of ferrous metals against atmospheric corrosion. It has, in some respects, properties related to other types of zinc coating such as galvanising, but owing to the small dimensional change involved, it is of particular value for the treatment of machined parts, bolts, nuts, etc. [Pg.397]

It is estimated that approximately 40% of the world production of zinc is consumed in hot-dip galvanising of iron and steel, and this adequately demonstrates the world-wide use of zinc as a protective coating. The success of zinc can be largely attributed to ease of application, low cost and high corrosion resistance. [Pg.487]

The specimens were removed after five years, when the only ones that had failed were some plates buried in made-up ground, consisting of ashes, at Corby and one pipe at Benfleet, At Corby no galvanised pipes were exposed and most of the coatings on the plates had corroded away. For this reason no figures are recorded for Corby in Table 13.10. The high rate of corrosion at Benfleet was attributed to the fact that the specimens were below the soil-water level for about half their life as the tide rose and fell. [Pg.493]

The zinc-aluminium alloys are most important. The zinc-55%-aluminium-1.5 -silicon alloy hot-dip coating was initiated over 20 years ago by the steel industry and has recently become of major worldwide importance (known as Galvalume, Zincalume, Alugalva, Aluzink, Aluzinc, Zincalit or Zalutite). The coating usually has 1(X)-4(X)<% more corrosion resistance than galvanising in the atmosphere, but less cathodic protection and also has the inherent problem of aluminium alloys when in contact with alkalis. [Pg.497]

Since 1980, the zinc-5-aluminium (notably Galfan which has a mischmetal addition) alloys, which are essentially based on the eutectic structure, have been developed commercially. They give 30-200% increase in corrosion resistance in the atmosphere and are extremely flexible. They can be used for sheet, wire and some types of tube galvanising whereas the zinc-55%-aluminium alloy is restricted to sheet. [Pg.497]

Zinc phosphate is now probably the most important pigment in anticorrosive paints. The selection of the correct binder for use with these pigments is very important and can dramatically affect their performance. Red lead is likely to accelerate the corrosion of non-ferrous metals, but calcium plumbate is unique in providing adhesion to newly galvanised surfaces in the absence of pretreatment, and is claimed to behave similarly on other metals in this group. [Pg.586]

Inhibitors can also lead to the co-called polarity-reversal effects. In corrosive environments the zinc coating on galvanised steel acts sacrificially in preventing the corrosion of any exposed steel. However, in the presence of sodium benzoate or sodium nitrite steel exposed at breaks in the zinc coating may corrode quite readily. [Pg.781]

The influence of moisture is fundamental, as it is with other forms of corrosion. Long-term contact tests with ponderosa pine, some treated with zinc chloride, in atmospheres at 30, 65 and 95% r.h. showed that at 30 and 65% r.h. plain wire nails were not very severely corroded even in zinc chloride-impregnated wood. At 95% r.h. plain wire nails were severely corroded, though galvanised nails were attacked only by impregnated wood. Brass and aluminium were also attacked to some extent at 95% r.h. Some concurrent outdoor tests at Madison, Wisconsin, showed that the outdoor climate there was somewhat more severe than a 65% r.h. laboratory test. [Pg.967]


See other pages where Corrosion galvanisation is mentioned: [Pg.130]    [Pg.555]    [Pg.337]    [Pg.234]    [Pg.4]    [Pg.232]    [Pg.234]    [Pg.347]    [Pg.358]    [Pg.358]    [Pg.699]    [Pg.818]    [Pg.1289]    [Pg.1323]    [Pg.50]    [Pg.52]    [Pg.57]    [Pg.58]    [Pg.101]    [Pg.383]    [Pg.385]    [Pg.386]    [Pg.410]    [Pg.428]    [Pg.451]    [Pg.495]    [Pg.498]    [Pg.751]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Galvanisation

Galvanising

© 2024 chempedia.info