Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion aeration

Hydrogen Sulfide HjS Cause of rotten egg odor corrosion Aeration, chlorination, highly basic anion exchange... [Pg.147]

Before any remedial action can be taken, it is necessary to identify the t) e of bacteria involved in corrosion. Aeration of water in a closed recirculating system reduces the activity of anerobic bacteria. Chlorination and treatment with biocides help control populations of some bacteria, though they are not effective in all cases. Also, the bacteriocides fail to reach the areas underneath deposits where the bacteria thrive. Coating a buried structure with tar, enamel, plastic, or the like is often an effective means to... [Pg.752]

Hydrogen Sulfide H,S Cause of rotten egg odor. Corrosion. Aeration. Chlorination. Highly basic anion exchange. [Pg.273]

Concentration of corrosives Aeration Heat flux Welding defects... [Pg.105]

It is reported that mild carbon steels may be effectively protected by as little as 55 ppm of KTc04 in aerated distilled water at temperatures up to 250oC. This corrosion protection is limited to closed systems, since technetium is radioative and must be confined. 9sTc has a specific activity of 6.2 X lOs Bq/g. Activity of this level must not be allowed to spread. 99Tc is a contamination hazard and should be handled in a glove box. [Pg.107]

In neutral and alkaline environments, the magnesium hydroxide product can form a surface film which offers considerable protection to the pure metal or its common alloys. Electron diffraction studies of the film formed ia humid air iadicate that it is amorphous, with the oxidation rate reported to be less than 0.01 /rni/yr. If the humidity level is sufficiently high, so that condensation occurs on the surface of the sample, the amorphous film is found to contain at least some crystalline magnesium hydroxide (bmcite). The crystalline magnesium hydroxide is also protective ia deionized water at room temperature. The aeration of the water has Httie or no measurable effect on the corrosion resistance. However, as the water temperature is iacreased to 100°C, the protective capacity of the film begias to erode, particularly ia the presence of certain cathodic contaminants ia either the metal or the water (121,122). [Pg.332]

Fig. 7. Temperature—pH limits for crevice corrosion of titanium alloys in naturally aerated sodium chloride-rich brines. The shaded areas indicate regions... Fig. 7. Temperature—pH limits for crevice corrosion of titanium alloys in naturally aerated sodium chloride-rich brines. The shaded areas indicate regions...
As discussed above, deposits can cause accelerated localized corrosion by creating differential aeration cells. This same phenomenon occurs with a biofilm. The nonuniform nature of biofilm formation creates an inherent differential, which is enhanced by the oxygen consumption of organisms in the biofilm. [Pg.268]

Zirconium is totally resistant to attack of hydrochloric acid in all concentrations to temperatures well above boiling (Fig. 2). Aeration has no effect, but oxidizing agents such as cupric or ferric ions may cause pitting. Zirconium also has excellent corrosion resistance to hydrobromic and hydriodic acid. [Pg.429]

Reduction of oxygen is one of the predominant cathodic reactions contributing to corrosion. Awareness of the importance of the role of oxygen was developed in the 1920s (19). In classical drop experiments, the corrosion of iron or steel by drops of electrolytes was shown to depend on electrochemical action between the central relatively unaerated area, which becomes anodic and suffers attack, and the peripheral aerated portion, which becomes cathodic and remains unattacked. In 1945 the linear relationship between rate of iron corrosion and oxygen pressure from 0—2.5 MPa (0—25 atm) was shown (20). [Pg.278]

Fig. 6. Effect of pH on corrosion of iron in aerated water at room temperature (22). Point A is where evolution begins. To convert mm/yr to mils per... Fig. 6. Effect of pH on corrosion of iron in aerated water at room temperature (22). Point A is where evolution begins. To convert mm/yr to mils per...
Copper is not ordinarily corroded in water unless dissolved oxygen is present. In nearly pure aerated water, a thin, protective layer of cuprous oxide and cupric hydroxide forms. Oxygen must diffuse through the film for corrosion to occur. [Pg.102]

The oxidation products are almost insoluble and lead to the formation of protective films. They promote aeration cells if these products do not cover the metal surface uniformly. Ions of soluble salts play an important role in these cells. In the schematic diagram in Fig. 4-1 it is assumed that from the start the two corrosion partial reactions are taking place at two entirely separate locations. This process must quickly come to a complete standstill if soluble salts are absent, because otherwise the ions produced according to Eqs. (2-21) and (2-17) would form a local space charge. Corrosion in salt-free water is only possible if the two partial reactions are not spatially separated, but occur at the same place with equivalent current densities. The reaction products then react according to Eq. (4-2) and in the subsequent reactions (4-3a) and (4-3b) to form protective films. Similar behavior occurs in salt-free sandy soils. [Pg.140]

Both reactions indicate that the pH at the cathode is high and at the anode low as a result of the ion migration. In principle, the aeration cell is a concentration cell of H ions, so that the anode remains free of surface films and the cathode is covered with oxide. The J U curves in Fig. 2-6 for anode and cathode are kept apart. Further oxidation of the corrosion product formed according to Eq. (4-4) occurs at a distance from the metal surface and results in a rust pustule that covers the anodic area. Figure 4-2 shows the steps in the aeration cell. The current circuit is completed on the metal side by the electron current, and on the medium side by ion migration. [Pg.141]

It is a consequence of the action of different pH values in the aeration cell that these cells do not arise in well-buffered media [4] and in fast-flowing waters [5-7]. The enforced uniform corrosion leads to the formation of homogeneous surface films in solutions containing Oj [7-9]. This process is encouraged by film-forming inhibitors (HCOj, phosphate, silicate, Ca and AP ) and disrupted by peptizing anions (CP, SO ") [10]. In pure salt water, no protective films are formed. In this case the corrosion rate is determined by oxygen diffusion [6,7,10]... [Pg.142]

Steel in cement mortar is in the passive state represented by field II in Fig. 2-2. In this state reinforcing steel can act as a foreign cathodic object whose intensity depends on aeration (see Section 4.3). The passivity can be lost by introduction of sufficient chloride ions or by reaction of the mortar with COj-forming carbonates, resulting in a considerable lowering of the pH. The coordinates then lie in field I. The concentration of OH ions can be raised by strong cathodic polarization and the potential lowered, resulting in possible corrosion in field IV (see Section 2.4). [Pg.173]

Coatings of less noble metals than the substrate metal (e.g., Zn on Fe) are only protective if the corrosion product of the metal coating restricts the corrosion process. At the same time, the formation of aeration cells is hindered by the metal coating. No corrosion occurs at defects. Additional cathodic protection to reduce the corrosion of the metal coating can be advantageous. Favorable polarization properties and low protection current requirements are possible but need to be tested in individual cases. The possibility of damage due to blistering and cathodic corrosion must be heeded. [Pg.176]

However, if part of the reinforcing steel is aerated, a cell is formed as in Section 2.2.4.2. With a high surface area ratio SJS and with well-aerated cathodes, very high corrosion rates can occur at anodic regions. [Pg.428]

The information in Sections 2.2, 2.4 and 3.3 is relevant for protection criteria. Investigations [43] with steel-concrete test bodies have shown that even in unfavorable conditions with aerated large-area cathodes and small-area damp anodes in Cl -rich alkaline environments, or in decalcified (neutral) surroundings with additions of CU at test potentials of (/f.y.cuso4 = -0.75 and -0.85 V, cell formation is suppressed. After the experiments had proceeded for 6 months, the demounted specimens showed no recognizable corrosive attack. [Pg.429]

However, if the interpretation of the potentials measured for regions with a covering as uniform as possible and aeration or moisture is extended to estimate the potential gradients corresponding to the explanation for Fig. 3-24, there follows the possibility of classifying the state of corrosion [52-54]. Furthermore, the sensitivity of the estimate can be raised by anodic polarization according to the explanation given for Fig. 2-7, because the depassivated steel is less polarizable than the passive steel in concrete [43]. [Pg.433]

Carbon Dioxide CO2 Corrosion in water lines and particularly steam and condensate lines Aeration, deaeration, neutralization with alkalies, filming and neutralizing amines... [Pg.146]


See other pages where Corrosion aeration is mentioned: [Pg.334]    [Pg.62]    [Pg.334]    [Pg.62]    [Pg.112]    [Pg.82]    [Pg.512]    [Pg.280]    [Pg.195]    [Pg.279]    [Pg.1124]    [Pg.2423]    [Pg.2449]    [Pg.67]    [Pg.68]    [Pg.111]    [Pg.128]    [Pg.159]    [Pg.365]    [Pg.48]    [Pg.67]    [Pg.144]    [Pg.148]    [Pg.166]    [Pg.174]    [Pg.393]    [Pg.433]   
See also in sourсe #XX -- [ Pg.39 , Pg.47 ]




SEARCH



Aerated total immersion corrosion test

Aeration

Aerators

Differential aeration corrosion

© 2024 chempedia.info