Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper hydroxylases

Copper, Cu ((f ) 5, square pyramid 6, tetragonal O-Carboxylate, A-imidazoIe Type II copper oxidases, hydoxylases Type III copper hydroxylases, dioxygen transport in hemocyanin... [Pg.5]

Copper is one of the twenty-seven elements known to be essential to humans (69—72) (see Mineral nutrients). The daily recommended requirement for humans is 2.5—5.0 mg (73). Copper is probably second only to iron as an oxidation catalyst and oxygen carrier in humans (74). It is present in many proteins, such as hemocyanin [9013-32-3] galactose oxidase [9028-79-9] ceruloplasmin [9031 -37-2] dopamine -hydroxylase, monoamine oxidase [9001-66-5] superoxide dismutase [9054-89-17, and phenolase (75,76). Copper aids in photosynthesis and other oxidative processes in plants. [Pg.256]

Dodecametallic complexes, 1,167 Dodecamolybdometalates, 3,1045 Dodecatantalates, 3,1029 Dolerophane, 6,855 Donor numbers, 2,74 Dopamine (3-hydroxylase, 6, 711 copper, 6,654... [Pg.124]

Dopamine (5-hydroxylase is a copper-containing enzyme involved in the synthesis of the catecholamines norepinephrine and epinephrine from tyrosine in the adrenal medulla and central nervous system. During hy-droxylation, the Cu+ is oxidized to Cu " reduction back... [Pg.495]

A number of peptide hormones have a carboxyl terminal amide which is derived from a glycine terminal residue. This glycine is hydroxylated on the a-carbon by a copper-containing enzyme, peptidylglycine hydroxylase, which, again, requires ascorbate for reduction of Cu ". ... [Pg.496]

Phenylalanine is hydroxylated to tyrosine and then sequentially to 4-hydroxyphenyl-pyruvate and by dioxygenation and rearrangement to 2,5-dihydroxyphenylpyruvate (Figure 3.16) (Arias-Barrau et al. 2004). Hydroxylation involves 6,7-dimethyltetrahydro-biopterin that is converted into the 4a-carbinolamine (Song et al. 1999). Copper is not a component of the active enzyme, although there is some disagreement on whether or not Fe is involved in the reaction for the hydroxylase from Chromobacterium violaceum (Chen and Frey 1998). [Pg.113]

Under conditions of copper deficiency, some methanotrophs can express a cytosolic, soluble form of MMO (sMMO) (20-23), the properties of which form the focus of the present review. The sMMO system comprises three separate protein components which have all been purified to homogeneity (24,25). The hydroxylase component, a 251 kD protein, contains two copies each of three subunits in an a 82y2 configuration. The a subunit of the hydroxylase houses the dinuclear iron center (26) responsible for dioxygen activation and for substrate hydroxylation (27). The 38.6 kD reductase contains flavin adenine dinucleotide (FAD) and Fe2S2 cofactors (28), which enable it to relay electrons from reduced nicotinamide adenine dinucleotide (NADH) to the diiron center in the... [Pg.267]

Dopamine /3-hydroxylase (D/3H) is a copper-containing glycoprotein that hydroxylates dopamine at the benzylic position to norepinephrine.84 During the attempted crystallization of the bis(hydroxide)-bridged dicopper(II) dimer, a side product was subsequently isolated (complex (63)), revealing intramolecular hydroxylation at a formally benzylic position of the tris(imidazo-lyl)phosphine ligand.85 The copper(II) center has an axially compressed TBP structure. [Pg.759]

Copper is part of several essential enzymes including tyrosinase (melanin production), dopamine beta-hydroxylase (catecholamine production), copper-zinc superoxide dismutase (free radical detoxification), and cytochrome oxidase and ceruloplasmin (iron conversion) (Aaseth and Norseth 1986). All terrestrial animals contain copper as a constituent of cytochrome c oxidase, monophenol oxidase, plasma monoamine oxidase, and copper protein complexes (Schroeder et al. 1966). Excess copper causes a variety of toxic effects, including altered permeability of cellular membranes. The primary target for free cupric ions in the cellular membranes are thiol groups that reduce cupric (Cu+2) to cuprous (Cu+1) upon simultaneous oxidation to disulfides in the membrane. Cuprous ions are reoxidized to Cu+2 in the presence of molecular oxygen molecular oxygen is thereby converted to the toxic superoxide radical O2, which induces lipoperoxidation (Aaseth and Norseth 1986). [Pg.133]

Dopastin is an experimental antihypertensive agent which has been noted to potently inhibit copper-dependent dopamine p hydroxylase [100]. The pharmacological... [Pg.64]

Copper is a component of many enzymes including amine oxidase, lysyl oxidase, ferroxidase, cytochrome oxidase, dopamine P-hydroxylase, superoxide dismutase and tyrosinase. This latter enzyme is present in melanocytes and is important in formation of melanin controlling the colour of skin, hair and eyes. Deficiency of tyrosinase in skin leads to albinism. Cu " ion plays an important role in collagen formation. [Pg.346]

Tyrosinase is a monooxygenase which catalyzes the incorporation of one oxygen atom from dioxygen into phenols and further oxidizes the catechols formed to o-quinones (oxidase action). A comparison of spectral (EPR, electronic absorption, CD, and resonance Raman) properties of oxy-tyrosinase and its derivatives with those of oxy-Hc establishes a close similarity of the active site structures in these proteins (26-29). Thus, it seems likely that there is a close relationship between the binding of dioxygen and the ability to "activate" it for reaction and incoiporation into organic substrates. Other important copper monooxygenases which are however of lesser relevance to the model studies discussed below include dopamine p-hydroxylase (16,30) and a recently described copper-dependent phenylalanine hydroxylase (31). [Pg.86]

Transition metal hydroperoxo species are well established as important intermediates in the oxidation of hydrocarbons (8,70,71). As they relate to the active oxygenating reagent in cytochrome P-450 monooxygenase, (porphyrin)M-OOR complexes have come under recent scmtiny because of their importance in the process of (poiphyrin)M=0 formation via 0-0 cleavage processes (72-74). In copper biochemistry, a hydroperoxo copper species has been hypothesized as an important intermediate in the catalytic reaction of the copper monooxygenase, dopamine P-hydroxylase (75,76). A Cu-OOH moiety has also been proposed to be involved in the disproportionation of superoxide mediated by the copper-zinc superoxide dismutase (77-78). Thus, model Cun-OOR complexes may be of... [Pg.96]

This enzyme [EC 1.14.17.1], also known as dopamine j8-hydroxylase, is a copper-dependent system catalyzing the reaction of 3,4-dihydroxyphenethylamine with ascorbate and dioxygen to produce noradrenaline, dehydroascorbate, and water. The enzyme is stimulated by fu-marate. [Pg.214]

These systems are also described as normal copper proteins due to their conventional ESR features. In the oxidized state, their color is light blue (almost undetectable) due to weak d-d transitions of the single Cu ion. The coordination sphere around Cu, which has either square planar or distorted tetrahedral geometry, contains four ligands with N and/or 0 donor atoms [ 12, 22]. Representative examples of proteins with this active site structure (see Fig. 1) and their respective catalytic function include galactose oxidase (1) (oxidation of primary alcohols) [23,24], phenylalanine hydroxylase (hydroxy-lation of aromatic substrates) [25,26], dopamine- 6-hydroxylase (C-Hbond activation of benzylic substrates) [27] and CuZn superoxide dismutase (disproportionation of 02 superoxide anion) [28,29]. [Pg.28]

The multiprotein complex methane monooxygenase (MMO) serves meth-anotrophs to convert methane to methanol. It can be either soluble (sMMO) or membrane bound ( particulate , pMMO) and it typically consists of three components, a reductase (MMOR), a component termed protein B (MMOB) and a hydroxylase denoted MMOH. The nature of the metal cofactors in the latter component are reasonably well understood for sMMO as will be discussed in the non-heme iron section. For the pMMO of Methylococcus capsulatus an obligate requirement for copper was shown. As reported in reference 1 a trinuclear Cu(II) cluster was discussed128 but the number and coordination of coppers still is a matter of continuing investigation since then. [Pg.132]


See other pages where Copper hydroxylases is mentioned: [Pg.5]    [Pg.1065]    [Pg.5]    [Pg.152]    [Pg.131]    [Pg.97]    [Pg.5]    [Pg.1065]    [Pg.5]    [Pg.152]    [Pg.131]    [Pg.97]    [Pg.385]    [Pg.293]    [Pg.39]    [Pg.495]    [Pg.103]    [Pg.298]    [Pg.293]    [Pg.781]    [Pg.324]    [Pg.339]    [Pg.172]    [Pg.213]    [Pg.173]    [Pg.408]    [Pg.95]    [Pg.287]    [Pg.301]    [Pg.334]    [Pg.89]    [Pg.147]    [Pg.949]    [Pg.219]    [Pg.173]    [Pg.54]    [Pg.131]    [Pg.284]    [Pg.286]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



© 2024 chempedia.info