Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymers of styrene

Many copolymers of styrene are manufactured on a large commercial scale. Because styrene copolymerizes readily with many other monomers, it is possible to obtain a wide distribution of properties. Random copolymers form quite readily by free-radical mechanism [185,194]. Some can also be formed by ionic mechanism. In addition, graft and block copolymers of styrene are also among commercially important materials. [Pg.370]

Most comonomers differ from styrene in polarity and reactivity. A desired copolymer composition can be achieved, however, through utihzation of copolymerizatiOTi parameters based on kinetic data and on quanmm-chemical considerations. This is done industrially in preparations of styrene-acrylonitrile, styrene-methyl methacrylate, and styrene-maleic anhydride copolymers of different compositions. [Pg.370]

For many applications, the homopolymer of styrene is too brittle. To overcome that, many different approaches were originally tried. These included use of high molecular weight polymers, use of plasticizers, fillers (glass fiber, wood flour, etc.), deliberate orientation of the polymeric chains, copolymerization and addition of rubbery substances. Effect of plasticizers is too severe for practical use, and use of high molecular weight polymers exhibits only marginal improvement. Use of fillers. [Pg.370]

Addition of rubbery materials, however, does improve the impact resistance of polystyrene. This is done, therefore, extensively. The most common mbbers used for this purpose are butadiene-styrene copolymers. Some butadiene homopolymers are also used but to a lesser extent. The high-impact polystyrene is presently prepared by dissolving the rubber in a styrene monomer and then polymerizing the styrene. This polymerizatiOTi is either done in bulk or in suspension. The product contains styrene-butadiene rubber, styrene homopolymer, and a considerable portion of styrene-graft copolymer that forms when polystyrene radicals attack the rubber molecules. The product has very enhanced impact resistance. [Pg.371]

In high-impact polystyrene, the rubber exists in discrete droplets, less than 50 pm in diameter. In effect the polymerization serves to form an oil in oil emulsion [199] where the polystyrene is in the continuous phase and the rubber is in a dispersed phase. The graft copolymer that forms serves to emulsify this heterogeneous polymer solution [200]. [Pg.371]

Some of the effects of random copolymerization on secondary mechanical relaxation processes will be illustrated here on styrene-co-acrylonitrile (SAN) and on styrene-co-methacrylic acid (SMAA). [Pg.677]

The shift to higher temperature of the 3 peak in SAN with respect to aPS homopolymer can be understood by considering Equation (6). It is expected that Cfl will take the same value in SAN and aPS because the van der Waals cross-sectional area is not affected. Therefore, owing to the decrease in the mass [Pg.677]

The characteristics of the dynamic mechanical spectrum of SMAA show drastic changes compared with those of the aPS homopolymer even at very low molar fractions of the added comonomer. All the changes observed reflect the ionic interactions. The a relaxation temperature increases with increasing methacrylic acid content as a consequence of a stable network of chemical crosslinks due to anhydride bridge formation. The y relaxation could be related to local motion of methacrylic acid due to the breakdown of the weakest hydrogen bonds. The 3 relaxation could be attributed to local motion of the backbone chain induced by the breakdown of stronger hydrogen bonds than those invoked for the y relaxation. [Pg.678]


ABS plastics A group of plastic materials based on blended copolymers of styrene-acrylo ... [Pg.9]

Annis B K, Noid D W, Sumpter B G, Reffner J R and Wunderlich B 1992 Application of atomic force microscopy (AFM) to a block copolymer and an extended chain polyethylene Makromol. Chem., Rapid. Commun. 13 169 Annis B K, Schwark D W, Reffner J R, Thomas E L and Wunderlich B 1992 Determination of surface morphology of diblock copolymers of styrene and butadiene by atomic force microscopy Makromol. Chem. 193 2589... [Pg.1727]

As described in the box Di ene Polymers in Chapter 10 most synthetic rubber is a copolymer of styrene and 1 3 butadiene... [Pg.449]

Polyolefin Polyester Block copolymers of styrene and butadiene or styrene and isoprene Block copolymers of styrene and ethylene or styrene and butylene Poly(vinyl chloride) and poly(vinyl acetate) ... [Pg.1058]

Haward et al.t have reported some research in which a copolymer of styrene and hydroxyethylmethacrylate was cross-linked by hexamethylene diisocyanate. Draw the structural formula for a portion of this cross-linked polymer and indicate what part of the molecule is the result of a condensation reaction and what part results from addition polymerization. These authors indicate that the crosslinking reaction is carried out in sufficiently dilute solutions of copolymer that the crosslinking is primarily intramolecular rather than intermolecular. Explain the distinction between these two terms and why concentration affects the relative amounts of each. [Pg.339]

An elegant example of a system investigated by UV-visible spectroscopy is the copolymer of styrene (molecule 1) and 1-chloro-l, 3-butadiene (molecule 2). These molecules quantitatively degrade with the loss of HCl upon heating in base solution. This restores 1,3-unsaturation to the butadiene repeat unit ... [Pg.462]

Figure 7.5 Ultraviolet-visible spectrum of dehydrohalogenated copolymers of styrene-l-chloro-1,3-butadiene. [Redrawn with permission from A. Winston and P. Wichacheewa, Macromolecules 6 200 (1973), copyright 1973 by the American Chemical Society.]... Figure 7.5 Ultraviolet-visible spectrum of dehydrohalogenated copolymers of styrene-l-chloro-1,3-butadiene. [Redrawn with permission from A. Winston and P. Wichacheewa, Macromolecules 6 200 (1973), copyright 1973 by the American Chemical Society.]...
Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]... Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]...
In addition to graft copolymer attached to the mbber particle surface, the formation of styrene—acrylonitrile copolymer occluded within the mbber particle may occur. The mechanism and extent of occluded polymer formation depends on the manufacturing process. The factors affecting occlusion formation in bulk (77) and emulsion processes (78) have been described. The use of block copolymers of styrene and butadiene in bulk systems can control particle size and give rise to unusual particle morphologies (eg, coil, rod, capsule, cellular) (77). [Pg.204]

Ion-exchange separations can also be made by the use of a polymer with exchangeable anions in this case, the lanthanide or actinide elements must be initially present as complex ions (11,12). The anion-exchange resins Dowex-1 (a copolymer of styrene and divinylben2ene with quaternary ammonium groups) and Amherlite IRA-400 (a quaternary ammonium polystyrene) have been used successfully. The order of elution is often the reverse of that from cationic-exchange resins. [Pg.215]

Physical Stabilization Process. Cellulai polystyrene [9003-53-6] the outstanding example poly(vinyl chloride) [9002-86-2] copolymers of styrene and acrylonitrile (SAN copolymers [9003-54-7]) and polyethylene [9002-88-4] can be manufactured by this process. [Pg.405]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

GopolymeriZation Initiators. The copolymerization of styrene and dienes in hydrocarbon solution with alkyUithium initiators produces a tapered block copolymer stmcture because of the large differences in monomer reactivity ratios for styrene (r < 0.1) and dienes (r > 10) (1,33,34). In order to obtain random copolymers of styrene and dienes, it is necessary to either add small amounts of a Lewis base such as tetrahydrofuran or an alkaU metal alkoxide (MtOR, where Mt = Na, K, Rb, or Cs). In contrast to Lewis bases which promote formation of undesirable vinyl microstmcture in diene polymerizations (57), the addition of small amounts of an alkaU metal alkoxide such as potassium amyloxide ([ROK]/[Li] = 0.08) is sufficient to promote random copolymerization of styrene and diene without producing significant increases in the amount of vinyl microstmcture (58,59). [Pg.239]

Strong Base Anion Exchangers. As ia the synthesis of weak base anion exchangers, strong base resias are manufactured from styrenic as well as acryhc copolymers. Those based on copolymers of styrene and divinylben2ene are chloromethylated and then aminated. These reactions are the same as for the styrenic weakbase resias. The esseatial differeace is the amine used for amination. Trimethyl amine [75-50-3] N(CH2)3, and /V, /V- dim ethyl eth a n ol amine [108-01 -0] (CH2)2NCH2CH20H, are most commonly used. Both form quaternary ammonium functional groups similar to (8). [Pg.375]

Fig. 8. Thermogravimetric analysis of polymers and copolymers of styrene in nitrogen at 10°C/min A represents PS B, poly(vinyltoluene) C, poly(a-methylstyrene) D, poly(styrene-i (9-acrylonitrile), with 71.5% styrene E, poly(styrene-i (9-butadiene), with 80% styrene and F,... Fig. 8. Thermogravimetric analysis of polymers and copolymers of styrene in nitrogen at 10°C/min A represents PS B, poly(vinyltoluene) C, poly(a-methylstyrene) D, poly(styrene-i (9-acrylonitrile), with 71.5% styrene E, poly(styrene-i (9-butadiene), with 80% styrene and F,...
Monomethylacryloyl and vinylbenzyl derivatives of sucrose have been prepared as intermediates for polymers, and preparation of a range of copolymers of styrene and O-methjiacryloylsucrose has been described (114). Synthesis of 4- and 6-0-acryloylsucrose has been achieved by acid-catalyzed hydrolysis of 4,6-0-(l-ethoxy-2-propenyhdene)sucrose (76). These acryloyl derivatives have been polymerized and copolymerized with styrene (qv). [Pg.37]

The resins used are highly cross-linked organic polymers with acidic functional groups. The most common of the resins used are sulfonated copolymers of styrene and divinylben2ene (see Ion exchange). [Pg.280]

Another example of water-reducible acryhc resins is used in the interior linings of two-piece beverage cans. A graft copolymer of styrene, ethyl... [Pg.338]

The first, and still widely used, polymer-supported ester is formed from an amino acid and a chloromethylated copolymer of styrene-divinylbenzene. Originally it was cleaved by basic hydrolysis (2 N NaOH, FtOH, 25°, 1 h). Subsequently, it has been cleaved by hydrogenolysis (H2/Pd-C, DMF, 40°, 60 psi, 24 h, 71% yield), and by HF, which concurrently removes many amine protective groups. Monoesterification of a symmetrical dicarboxylic acid chloride can be effected by reaction with a hydroxymethyl copolymer of styrene-divinylbenzene to give an ester a mono salt of a diacid was converted into a dibenzyl polymer. ... [Pg.260]

When styrene and butadiene are polymerised, the result is a mixture of distinct molecules of polystyrene and of a rubbery copolymer of styrene and butadiene. On cooling, the rubbery copolymer precipitates out, much as CuAlj precipitated out of aluminium alloys, or FejC out of steels (Chapters 10 and 11). The resulting microstruc-... [Pg.256]

The toughness of interfaces between immiscible amorphous polymers without any coupling agent has been the subject of a number of recent studies [15-18]. The width of a polymer/polymer interface is known to be controlled by the Flory-Huggins interaction parameter x between the two polymers. The value of x between a random copolymer and a homopolymer can be adjusted by changing the copolymer composition, so the main experimental protocol has been to measure the interface toughness between a copolymer and a homopolymer as a function of copolymer composition. In addition, the interface width has been measured by neutron reflection. Four different experimental systems have been used, all containing styrene. Schnell et al. studied PS joined to random copolymers of styrene with bromostyrene and styrene with paramethyl styrene [17,18]. Benkoski et al. joined polystyrene to a random copolymer of styrene with vinyl pyridine (PS/PS-r-PVP) [16], whilst Brown joined PMMA to a random copolymer of styrene with methacrylate (PMMA/PS-r-PMMA) [15]. The results of the latter study are shown in Fig. 9. [Pg.233]

Monoesterification of a symmetrical dicarboxylic acid chloride can be effected by reaction with a hydroxymethyl copolymer of styrene-divinylbenzene to give an ester a mono salt of a diacid was converted into a dibenzyl polymer." ... [Pg.428]

Copolymers of styrene-acrylonitrile (SAN) have higher tensile strength than styrene homopolymers. A copolymer of acrylonitrile, buta-... [Pg.334]

Currently, important TPE s include blends of semicrystalline thermoplastic polyolefins such as propylene copolymers, with ethylene-propylene terepolymer elastomer. Block copolymers of styrene with other monomers such as butadiene, isoprene, and ethylene or ethylene/propy-lene are the most widely used TPE s. Styrene-butadiene-styrene (SBS) accounted for 70% of global styrene block copolymers (SBC). Currently, global capacity of SBC is approximately 1.1 million tons. Polyurethane thermoplastic elastomers are relatively more expensive then other TPE s. However, they are noted for their flexibility, strength, toughness, and abrasion and chemical resistance. Blends of polyvinyl chloride with elastomers such as butyl are widely used in Japan. ... [Pg.358]

As has been described in Chapter 4, random copolymers of styrene (St) and 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) form a micelle-like microphase structure in aqueous solution [29]. The intramolecular hydrophobic aggregation of the St residues occurs when the St content in the copolymer is higher than ca. 50 mol%. When a small mole fraction of the phenanthrene (Phen) residues is covalently incorporated into such an amphiphilic polyelectrolyte, the Phen residues are hydrophobically encapsulated in the aggregate of the St residues. This kind of polymer system (poly(A/St/Phen), 29) can be prepared by free radical ter-polymerization of AMPS, St, and a small mole fraction of 9-vinylphenanthrene [119]. [Pg.84]

Hard, attrition-resistant, insoluble synthetic polymers (typically a copolymer of styrene with divinylbenzene). The resins are manufactured in a spherical bead shape that contain either exchangeable anion or cation portions, capable of exchanging with other anions or cations and usually in an aqueous medium. Typically cation resins for water softening will have a practical operating capacity of 20,000 gpg (at 6 lb NaCl per cu ft) rising to 30,000 gpg (at 15 lb NaCl per cu ft). [Pg.744]


See other pages where Copolymers of styrene is mentioned: [Pg.214]    [Pg.409]    [Pg.467]    [Pg.413]    [Pg.498]    [Pg.497]    [Pg.555]    [Pg.185]    [Pg.87]    [Pg.376]    [Pg.367]    [Pg.673]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.134]    [Pg.29]    [Pg.32]    [Pg.23]   
See also in sourсe #XX -- [ Pg.305 , Pg.317 ]

See also in sourсe #XX -- [ Pg.252 , Pg.253 ]

See also in sourсe #XX -- [ Pg.364 , Pg.372 , Pg.569 , Pg.598 , Pg.627 ]




SEARCH



Styrene-copolymers

© 2024 chempedia.info