Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Grafting free radical polymerization

In the manufacture of highly resident flexible foams and thermoset RIM elastomers, graft or polymer polyols are used. Graft polyols are dispersions of free-radical-polymerized mixtures of acrylonitrile and styrene partially grafted to a polyol. Polymer polyols are available from BASF, Dow, and Union Carbide. In situ polyaddition reaction of isocyanates with amines in a polyol substrate produces PHD (polyhamstoff dispersion) polyols, which are marketed by Bayer (21). In addition, blending of polyether polyols with diethanolamine, followed by reaction with TDI, also affords a urethane/urea dispersion. The polymer or PHD-type polyols increase the load bearing properties and stiffness of flexible foams. Interreactive dispersion polyols are also used in RIM appHcations where elastomers of high modulus, low thermal coefficient of expansion, and improved paintabiUty are needed. [Pg.347]

Copolymers of VDC can also be prepared by methods other than conventional free-radical polymerization. Copolymers have been formed by irradiation and with various organometaHic and coordination complex catalysts (28,44,50—53). Graft copolymers have also been described (54—58). [Pg.430]

Impact polystyrene (IPS) is one of a class of materials that contains mbber grafted with polystyrene. This composition is usually produced by polymerizing styrene (by mass or solution free-radical polymerization) in the presence of a small amount (ca 5%) of dissolved elastomer. Some of the important producers of impact-resistant polystyrenes are BASE (Polystyrol), Dow (Styron), and Monsanto (Lustrex). The 1988 U.S. production of impact polystyrene was more than 1 million t (92). [Pg.186]

The structure-property relationship of graft copolymers based on an elastomeric backbone poly(ethyl acry-late)-g-polystyrene was studied by Peiffer and Rabeony [321. The copolymer was prepared by the free radical polymerization technique and, it was found that the improvement in properties depends upon factors such as the number of grafts/chain, graft molecular weight, etc. It was shown that mutually grafted copolymers produce a variety of compatibilized ternary component blends. [Pg.641]

Corner, T. Free Radical Polymerization — The Synthesis of Graft Copolymers. Vol. 62, pp. 95— 142. [Pg.151]

Corner, T. Free Radical Polymerization — The Synthesis of Graft Copolymers. Vol. 62, pp. 95-142. Crescenzi, V. Some Recent Studies of Polyelectrolyte Solutions. Vol. 5, pp. 358-386. [Pg.239]

The theory of radiation-induced grafting has received extensive treatment [21,131,132]. The typical steps involved in free-radical polymerization are also applicable to graft polymerization including initiation, propagation, and chain transfer [133]. However, the complicating role of diffusion prevents any simple correlation of individual rate constants to the overall reaction rates. Changes in temperamre, for example, increase the rate of monomer diffusion and monomer... [Pg.868]

Yin et al. [73,74] prepared new microgel star amphiphiles and stndied the compression behavior at the air-water interface. Particles were prepared in a two-step process. First, the gel core was synthesized by copolymerization of styrene and divinylbenzene in diox-ane using benzoylperoxide as initiator. Microgel particles 20 run in diameter were obtained. Second, the gel core was grafted with acrylic or methacryUc acid by free radical polymerization, resulting in amphiphilic polymer particles. These particles were spread from a dimethylformamide/chloroform (1 4) solution at the air-water interface. tt-A cnrves indicated low compressibility above lOmNm and collapse pressnres larger than 40 mNm With increase of the hydrophilic component, the molecnlar area of the polymer and the collapse pressure increased. [Pg.216]

Radical grafting, 10 206 Radical-induced decompositions, 14 280 of dialkyl peroxydicarbonates, 14 289 Radical ozone reactions, 17 774 Radical polymerization, 22 40. See also Free-radical polymerization controlling, 14 297 of methacrylic ester polymers, 16 279-290... [Pg.784]

Grafting by free radical polymerization is the most widely used technique. [Pg.254]

Living free-radical polymerization has recently attracted considerable attention since it enables the preparation of polymers with well-controlled composition and molecular architecture previously the exclusive domain of ionic polymerizations, using very robust conditions akin to those of a simple radical polymerization [77 - 86]. In one of the implementations, the grafting is achieved by employing the terminal nitroxide moieties of a monolith prepared in the presence of a stable free radical such as 2,2,5,5-tetramethyl-l-pyperidinyloxy (TEMPO). In this way, the monolith is prepared first and its dormant free-... [Pg.99]

Dynamic formation of graft polymers was synthesized by means of the radical crossover reaction of alkoxyamines by using the complementarity between nitroxide radical and styryl radical (Fig. 8.13) [40]. Copolymer 48 having alkoxyamine units on its side chain was synthesized via atom transfer radical polymerization (ATRP) of TEMPO-based alkoxyamine monomer 47 and MMA at 50°C (Scheme 8.9). The TEMPO-based alkoxyamine-terminated polystyrene 49 was prepared through the conventional nitroxide-mediated free radical polymerization (NMP) procedure [5,41], The mixture of copolymers 48 and 49 was heated in anisole... [Pg.246]

SIP-driven polymer brush library fabrication leverages the fact that the polymerization initiation species are permanently bound to the substrate. Since the initiators are tethered, controlled delivery of monomer solution to different areas of the substrate results in a grafted polymer library. In NIST work, initiators bound via chlorosilane SAMs to silicon substrates were suitable for conducting controlled atom transfer radical polymerization (ATRP) [53] and traditional UV free radical polymerization [54, 55]. Suitable monomers are delivered in solution to the surface via microfluidic channels, which enables control over both the monomer solution composition and the time in which the solution is in contact with the initiating groups. After the polymerization is complete, the microchannel is removed from the substrate (or vice versa). This fabrication scheme, termed microchannel confined SIP ([t-SIP), is shown in Fig. 10. In these illustrations, and in the examples discussed below, the microchannels above the substrate are approximately 1 cm wide, 5 cm long, and 300-500 [tm high. [Pg.77]

Kalra et al. studied the synthesis of PPDL graft copolymers following route A as shown in Scheme 6. The macromonomers were obtained by the enzymatic ROP of PDL from HEMA and PEGMA [49]. In a comparative study, Novozym 435 was found to be the most active biocatalyst for this reaction step. Subsequently, graft copolymers were obtained by free-radical polymerization of the macromonomers. A similar approach was published by Srivastava for the HEMA-initiated enzymatic ROP of CL and subsequent free-radical polymerization [50]. [Pg.93]

One method is to measure chain-transfer coefficients with low-MW analogues of the polymer. Thus Gilchrist (140) measured the rate at which 14C labelled decane was incorporated into polyethylene in the free-radical polymerization, and hence obtained an estimate of the transfer coefficient with methylene groups this was in fair agreement with another estimate obtained from the effect of the addition of fractions of linear polyethylene on the Mn of the branched polyethylene, which could be separated from linear polymer plus grafted branched polymer by column extraction. Low MW polymer may be used as a transfer agent Schulz and co-workers (189) obtained chain-transfer coefficients in styrene polymerization from the effect of added low MW polymer on Mn. [Pg.42]


See other pages where Grafting free radical polymerization is mentioned: [Pg.364]    [Pg.539]    [Pg.508]    [Pg.160]    [Pg.76]    [Pg.147]    [Pg.869]    [Pg.319]    [Pg.182]    [Pg.137]    [Pg.353]    [Pg.406]    [Pg.407]    [Pg.409]    [Pg.413]    [Pg.33]    [Pg.35]    [Pg.4]    [Pg.25]    [Pg.5]    [Pg.56]    [Pg.58]    [Pg.104]    [Pg.110]    [Pg.157]    [Pg.37]    [Pg.5]    [Pg.162]    [Pg.299]    [Pg.311]    [Pg.311]   
See also in sourсe #XX -- [ Pg.266 , Pg.267 , Pg.268 , Pg.269 ]




SEARCH



Free radical grafting

Free radical polymerization graft polymers

Free-radical graft polymerization

Free-radical graft polymerization

Graft polymerization

Graft polymerization radical

Graft radical

Grafting from polymer surfaces free radical polymerization

Grafting polymerization

Grafting radicals

Polymerization free radical

© 2024 chempedia.info