Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling retardancy

Fig. 2. Graph of plume material thickness v. distance (normalized) from plume s centre for several lithospheric geometries. For linear flow (e.g. along a channel at the LAB below a pre-existing rift zone) and radial flow (e.g. plume arising beneath a flat-keeled craton) material from the plume head is relatively uniform in thickness, except at its edges where viscosity increases associated with cooling retard flow. The shape of the radial curve is similar for topography of limited (small craton) or infinite extent (large craton). Unlike the top two cases, the flow from the plume tail thins more rapidly with distance from the centre (continuous line). Fig. 2. Graph of plume material thickness v. distance (normalized) from plume s centre for several lithospheric geometries. For linear flow (e.g. along a channel at the LAB below a pre-existing rift zone) and radial flow (e.g. plume arising beneath a flat-keeled craton) material from the plume head is relatively uniform in thickness, except at its edges where viscosity increases associated with cooling retard flow. The shape of the radial curve is similar for topography of limited (small craton) or infinite extent (large craton). Unlike the top two cases, the flow from the plume tail thins more rapidly with distance from the centre (continuous line).
Antimony Oxide as a Primary Flame Retardant. Antimony oxide behaves as a condensed-phase flame retardant in cellulosic materials (2). It can be appHed by impregnating a fabric with a soluble antimony salt followed by a second treatment that precipitates antimony oxide in the fibers. When the treated fabric is exposed to a flame, the oxide reacts with the hydroxyl groups of the cellulose (qv) causing them to decompose endothermically. The decomposition products, water and char, cool the flame reactions while slowing the production and volatilization of flammable decomposition products (see Flaa retardants for textiles). [Pg.455]

When a component at an austenitizing temperature is placed in a quenchant, eg, water or oil, the surface cools faster than the center. The formation of martensite is more favored for the surface. A main function of alloying elements, eg, Ni, Cr, and Mo, in steels is to retard the rate of decomposition of austenite to the relatively soft products. Whereas use of less expensive plain carbon steels is preferred, alloy steels may be requited for deep hardening. [Pg.211]

Evaporation Retardants. Small molecule solvents that make up the most effective paint removers also have high vapor pressure and evaporate easily, sometimes before the remover has time to penetrate the finish. Low vapor pressure cosolvents are added to help reduce evaporation. The best approach has been to add a low melting point paraffin wax (mp = 46-57° C) to the paint remover formulation. When evaporation occurs the solvent is chilled and the wax is shocked-out forming a film on the surface of the remover that acts as a barrier to evaporation (5,6). The addition of certain esters enhances the effectiveness of the wax film. It is important not to break the wax film with excessive bmshing or scraping until the remover has penetrated and lifted the finish from the substrate. Likewise, it is important that the remover be used at warm temperatures, since at cool temperatures the wax film may not form, or if it does it will be brittle and fracture. Rapid evaporation occurs when the wax film is absent or broken. [Pg.550]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

Flame retardants (qv) are incorporated into the formulations in amounts necessary to satisfy existing requirements. Reactive-type diols, such as A/ A/-bis(2-hydroxyethyl)aminomethylphosphonate (Fyrol 6), are preferred, but nonreactive phosphates (Fyrol CEF, Fyrol PCF) are also used. Often, the necessary results are achieved using mineral fillers, such as alumina trihydrate or melamine. Melamine melts away from the flame and forms both a nonflammable gaseous environment and a molten barrier that helps to isolate the combustible polyurethane foam from the flame. Alumina trihydrate releases water of hydration to cool the flame, forming a noncombustible inorganic protective char at the flame front. Flame-resistant upholstery fabric or liners are also used (27). [Pg.348]

Glycine derivatives and aUphatic sulfonates are examples of compounds that can function in this way. The use of these inhibitors in cooling systems is usually lirnited by their biodegradabiUty and their toxicity toward fish. In addition, they can form thick, oily surface films, that may severely retard heat transfer. [Pg.270]

Poly(phenylene sulfide) (PPS) is another semicrystalline polymer used in the composites industry. PPS-based composites are generally processed at 330°C and subsequently cooled rapidly in order to avoid excessive crystallisation and reduced toughness. The superior fire-retardant characteristics of PPS-based composites result in appHcations where fire resistance is an important design consideration. Laminated composites based on this material have shown poor resistance to transverse impact as a result of the poor adhesion of the fibers to the semicrystalline matrix. A PPS material more recently developed by Phillips Petroleum, AVTEL, has improved fiber—matrix interfacial properties, and promises, therefore, an enhanced resistance to transverse impact (see PoLYAffiRS containing sulfur). [Pg.8]

Another consideration is the difference in thermal expansion between the matrix and the reinforcement. Composites are usually manufactured at high temperatures. On cooling any mismatch in the thermal expansion between the reinforcement and the matrix results in residual mismatch stresses in the composite. These stresses can be either beneficial or detrimental if they are tensile, they can aid debonding of the interface if they are compressive, they can retard debonding, which can then lead to bridge failure (25). [Pg.48]

Monomer conversion (79) is followed by measuring the specific gravity of the emulsion. The polymerization is stopped at 91% conversion (sp gr 1.069) by adding a xylene solution of tetraethylthiuram disulfide. The emulsion is cooled to 20°C and aged at this temperature for about 8 hours to peptize the polymer. During this process, the disulfide reacts with and cleaves polysulfide chain segments. Thiuram disulfide also serves to retard formation of gel polymer in the finished dry product. After aging, the alkaline latex is acidified to pH 5.5—5.8 with 10% acetic acid. This effectively stops the peptization reaction and neutralizes the rosin soap (80). [Pg.541]

The per pass ethylene conversion in the primary reactors is maintained at 20—30% in order to ensure catalyst selectivities of 70—80%. Vapor-phase oxidation inhibitors such as ethylene dichloride or vinyl chloride or other halogenated compounds are added to the inlet of the reactors in ppm concentrations to retard carbon dioxide formation (107,120,121). The process stream exiting the reactor may contain 1—3 mol % ethylene oxide. This hot effluent gas is then cooled ia a shell-and-tube heat exchanger to around 35—40°C by usiag the cold recycle reactor feed stream gas from the primary absorber. The cooled cmde product gas is then compressed ia a centrifugal blower before entering the primary absorber. [Pg.457]

When a clean steel coupon is placed in oxygenated water, a rust layer will form quickly. Corrosion rates are initially high and decrease rapidly while the rust layer is forming. Once the oxide forms, rusting slows and the accumulated oxide retards diffusion. Thus, Reaction 5.2 slows. Eventually, nearly steady-state corrosion is achieved (Fig. 5.2). Hence, a minimum exposure period, empirically determined by the following equation, must be satisfied to obtain consistent corrosion-rate data for coupons exposed in cooling water systems (Figs. 5.2 and 5.3) ... [Pg.99]

Galvanic corrosion in typical industrial cooling water systems is the net result of the interplay of these factors. Some factors may accelerate the corrosion process others may retard it. In their approximate order of importance, the more influential factors are discussed below. [Pg.359]

Propionaldehyde [123-38-6] M 58.1, b 48.5-48.7 , d 0.804, n 1.3733, n S 1.37115. Dried with CaS04 or CaCl2, and fractionally distd under nitrogen or in the presence of a trace of hydroquinone (to retard oxidation). Blacet and Pitts [J Am Chem Soc 74 3382 1952] repeatedly vacuum distd the middle fraction until no longer gave a solid polymer when cooled to -80°. It was stored with CaS04. [Pg.339]

In considering the heat that is transferred, the method first put forward by NussELT(%i and later modified by subsequent workers is followed. If the vapour condenses on a vertical surface, the condensate film flows downwards under the influence of gravity, although it is retarded by the viscosity of the liquid. The flow will normally be streamline and the heal flows through the film by conduction. In Nusselt s work it is assumed that the temperature of the film at the cool surface is equal to that of the surface, and at the other side was at the temperature of the vapour. In practice, there must be some small difference in temperature between the vapour and the film, although this may generally be neglected except where non-condensable gas is present in the vapour. [Pg.472]

The low-temperature method has been applied to some primary and secondary alcohols (Fig. 1) For example, solketal, 2,2-dimethyl-1,3-dioxolane-4-methanol (3) had been known to show low enantioselectivity in the lipase-catalyzed resolution (lipase AK, Pseudomonas fluorescens, E = 16 at 23°C, 27 at 0oc) 2ia however, the E value was successfully raised up to 55 by lowering the temperature to —40°C (Table 1). Further lowering the temperature rather decreased the E value and the rate was markedly retarded. Interestingly, the loss of the enantioselectivity below —40°C is not caused by the irreversible structural damage of lipase because the lipase once cooled below —40°C could be reused by allowing it to warm higher than -40°C, showing that the lipase does not lose conformational flexibility at such low temperatures. [Pg.28]

Phosphorous-based fire retardants carbonised the circuit boards surface, preventing fresh materialbecoming available for burning. Mineral fire retardants, such as aluminium hydroxide, dilute the flammable organic compounds in the bulk material, cool the material and release water on heating. [Pg.45]

Substances applied to or incorporated in a combustible material (e.g. organic polymers, nylon, vinyl and rubber, etc.) to reduce flammability. Act by retarding ignition, control/douse burning, reduce smoke evolution. Slow down or interrupt the self-sustained combustion cycle when the heat-flux is limited. Flame retardants (FRs) improve the combustion behaviour and alter the combustion process (cool, shield, dilute, react) so that decomposition products will differ from nonflame retarded articles. FRs are usually divided into three classes ... [Pg.779]


See other pages where Cooling retardancy is mentioned: [Pg.128]    [Pg.935]    [Pg.128]    [Pg.935]    [Pg.148]    [Pg.1094]    [Pg.2456]    [Pg.369]    [Pg.449]    [Pg.290]    [Pg.207]    [Pg.333]    [Pg.272]    [Pg.120]    [Pg.158]    [Pg.27]    [Pg.473]    [Pg.189]    [Pg.292]    [Pg.56]    [Pg.57]    [Pg.424]    [Pg.374]    [Pg.271]    [Pg.491]    [Pg.655]    [Pg.1138]    [Pg.520]    [Pg.203]    [Pg.203]    [Pg.457]    [Pg.382]    [Pg.195]    [Pg.99]    [Pg.128]   
See also in sourсe #XX -- [ Pg.650 ]




SEARCH



Cooling flame retardancy

Cooling retardance

Cooling retardance

Cooling retardants

Cooling retardants

Retarded cooling

© 2024 chempedia.info