Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling charring

Moderate Water hose or piping Cooling char bed with primitive stream-water spray at supposedly safe interval after shutdown... [Pg.151]

For this preparation, it is particularly necessary that the sodium acetate should be free from traces of water. The anhydrous material can be prepared by gently heating the hydrated salt (CHsCOONa,3HjO) in an esaporating-basin over a small Bunsen flame. The salt dissolves in its water of ciystallisation and resolidifies as this water is driven off further heating then causes the anhydrous material to melt. Stir the molten anhydrous material to avoid charring, and then allow it to cool in a desiccator. Powder the cold material rapidly in a mortar, and bottle without delay. [Pg.116]

Sulphuric add test. Heat 0 5 g. of citric acid or a citrate with 1 ml. of H2SO4 CO and COg are evolved and the mixture turns yellow, but does not char. Acetone dicarboxylic acid, OC(CH2COOH)g, is also formed, and is tested for after heating the mixture for 1 minute cool, add a few ml. of water and make alkaline with NaOH solution. Add a few ml. of a freshly prepared solution of sodium nitroprusside and note the intense red coloration (see Test 4 a) for ketones, p. 346). [Pg.352]

The residue (5) in the distilhng flask may stUl contain a water-soluble, non-volatile acid. Cool the acid solution, neutralise it with dilute sodium hydroxide solution to Congo red, and evaporate to dryness on a water bath under reduced pressure (water pump). Heat a httle of the residual salt (G) upon the tip of a nickel spatula in a Bunsen flame and observe whether any charring takes place. If charring occurs, thus... [Pg.1095]

Antimony Oxide as a Primary Flame Retardant. Antimony oxide behaves as a condensed-phase flame retardant in cellulosic materials (2). It can be appHed by impregnating a fabric with a soluble antimony salt followed by a second treatment that precipitates antimony oxide in the fibers. When the treated fabric is exposed to a flame, the oxide reacts with the hydroxyl groups of the cellulose (qv) causing them to decompose endothermically. The decomposition products, water and char, cool the flame reactions while slowing the production and volatilization of flammable decomposition products (see Flaa retardants for textiles). [Pg.455]

The gas, along with entrained ash and char particles, which are subjected to further gasification in the large space above the fluid bed, exit the gasifier at 954—1010°C. The hot gas is passed through a waste-heat boiler to recover the sensible heat, and then through a dry cyclone. SoHd particles are removed in both units. The gas is further cooled and cleaned by wet scmbbing, and if required, an electrostatic precipitator is included in the gas-treatment stream. [Pg.68]

Hot product char carries heat into the entrained bed to obtain the high heat-transfer rates required. Feed coal must be dried and pulverized. A portion of the char recovered from the reactor product stream is cooled and discharged as product. The remainder is reheated to 650—870°C in a char heater blown with air. Gases from the reactor are cooled and scmbbed free of product tar. Hydrogen sulfide is removed from the gas, and a portion is recycled to serve as the entrainment medium. [Pg.94]

Furthermore, 60—100 L (14—24 gal) oil, having sulfur content below 0.4 wt %, could be recovered per metric ton coal from pyrolysis at 427—517°C. The recovered oil was suitable as low sulfur fuel. Figure 15 is a flow sheet of the Rocky Flats pilot plant. Coal is fed from hoppers to a dilute-phase, fluid-bed preheater and transported to a pyrolysis dmm, where it is contacted by hot ceramic balls. Pyrolysis dmm effluent is passed over a trommel screen that permits char product to fall through. Product char is thereafter cooled and sent to storage. The ceramic balls are recycled and pyrolysis vapors are condensed and fractionated. [Pg.94]

SL/RN Process. In the SL/RN process (Fig. 4), sized iron ore, coal, and dolomite are fed to the rotary kiln wherein the coal is gasified and the iron ore is reduced. The endothermic heat of reduction and the sensible energy that is required to heat the reactants is provided by combustion of volatiles and carbon monoxide leaving the bed with air introduced into the free space above the bed. The temperature profile in the kiln is controlled by radial air ports in the preheat zone and axial air ports in the reduction zone. Part of the coal is injected through the centerline of the kiln at the discharge end. The hot reduced iron and char is discharged into an indirect rotary dmm cooler. The cooled product is screened and magnetically separated to remove char and ash. [Pg.429]

Steam generation. The char (product) is cooled by circulation of product gas. The char reactivity increases with time and must be stored carefully. [Pg.158]

Flame retardants (qv) are incorporated into the formulations in amounts necessary to satisfy existing requirements. Reactive-type diols, such as A/ A/-bis(2-hydroxyethyl)aminomethylphosphonate (Fyrol 6), are preferred, but nonreactive phosphates (Fyrol CEF, Fyrol PCF) are also used. Often, the necessary results are achieved using mineral fillers, such as alumina trihydrate or melamine. Melamine melts away from the flame and forms both a nonflammable gaseous environment and a molten barrier that helps to isolate the combustible polyurethane foam from the flame. Alumina trihydrate releases water of hydration to cool the flame, forming a noncombustible inorganic protective char at the flame front. Flame-resistant upholstery fabric or liners are also used (27). [Pg.348]

Sodium acetate [127-09-3] M 82.0, m 324°, d 1.53. Crystd from acetic acid and pumped under vacuum for lOh at 120°. Alternatively, crystd from aqueous EtOH, as the trihydrate. This material can be converted to the anhydrous salt by heating slowly in a porcelain, nickel or iron dish, so that the salt liquefies. Steam is evolved and the mass again solidifies. Heating is now increased so that the salt melts again. (NB if it is heated too strongly, the salt chars.) After several minutes, the salt is allowed to solidify and cooled to a convenient temperature before being powdered and bottled (water content should now less than 0.02%). [Pg.464]

Carbon and Hydrogen.—Carbon compounds are frequently inflammable, and when heated on platinum foil take fipe or char and burn away. A safer test is to heat the substance with some easily reducible metallic oxide, the oxygen of which forms carbon diovide with the carbon present. Take a piece of soft glass tube about 13 cm. (5 in.) long, and fuse it together at one end. Heat a gram or two of fine copper oxide in a porcelain crucible for a few minutes to drive off the moisture, and let it cool in a desiccator. Mix it with about one-tenth of its bulk of powdered sugar in a mortar. Pour the mixture into the tube, the open end of which is now drawn out into a wide capillary and oeni. at the same time into the form Fig. i. [Pg.1]

No. 41 or 541 filter paper. Wash the precipitate first with warm, dilute hydrochloric acid (approx. 0.5M), and then with hot water until free from chlorides. Pour the filtrate and washings into the original dish, evaporate to dryness on the steam bath, and heat in an air oven at 100-110 °C for 1 hour. Moisten the residue with 5 mL concentrated hydrochloric acid, add 75 mL water, warm to extract soluble salts, and filter through a fresh, but smaller, filter paper. Wash with warm dilute hydrochloric acid (approx. 0.1M), and finally with a little hot water. Fold up the moist filters, and place them in a weighed platinum crucible. Dry the paper with a small flame, char the paper, and burn off the carbon over a low flame take care that none of the fine powder is blown away. When all the carbon has been oxidised, cover the crucible, and heat for an hour at the full temperature of a Meker-type burner in order to complete the dehydration. Allow to cool in a desiccator, and weigh. Repeat the ignition, etc., until the weight is constant. [Pg.487]

Aluminium hydroxide is essentially non-toxic, but does require high addition levels to be effective. As a result, the physical properties of the compound usually suffer. Its fire retardancy action results from the endothermic reaction which releases water under fire conditions and produces a protective char . The endothermic reaction draws heat from the rubber/filler mass and thus reduces the thermal decomposition rate. The water release dilutes the available fuel supply, cooling the rubber surface and mass. [Pg.149]

Figure 1 has shown that the maximum chemisorption of oxygen on chars from untreated wood occurs at HTT 450°-500°C. However, in order to understand better the effect of metal ions on the total process consisting of pyrolysis and subsequent chemisorption and oxidation of wood char, it was necessary to carry out pyrolysis, isothermal chemisorption and oxidation reactions in a single experiment. A typical overall pyrolysis, isothermal chemisorption (140°C) and oxidation curve is shown in Figure 2. The temperature program is (1) heat from 25° to 500°C at 5°C/min, (2) cool at... Figure 1 has shown that the maximum chemisorption of oxygen on chars from untreated wood occurs at HTT 450°-500°C. However, in order to understand better the effect of metal ions on the total process consisting of pyrolysis and subsequent chemisorption and oxidation of wood char, it was necessary to carry out pyrolysis, isothermal chemisorption and oxidation reactions in a single experiment. A typical overall pyrolysis, isothermal chemisorption (140°C) and oxidation curve is shown in Figure 2. The temperature program is (1) heat from 25° to 500°C at 5°C/min, (2) cool at...

See other pages where Cooling charring is mentioned: [Pg.119]    [Pg.119]    [Pg.456]    [Pg.810]    [Pg.5]    [Pg.5]    [Pg.350]    [Pg.333]    [Pg.268]    [Pg.269]    [Pg.271]    [Pg.2371]    [Pg.2383]    [Pg.8]    [Pg.754]    [Pg.5]    [Pg.505]    [Pg.229]    [Pg.474]    [Pg.492]    [Pg.695]    [Pg.698]    [Pg.686]    [Pg.40]    [Pg.195]    [Pg.204]    [Pg.149]    [Pg.312]    [Pg.363]    [Pg.372]    [Pg.30]    [Pg.43]    [Pg.47]    [Pg.52]    [Pg.56]   
See also in sourсe #XX -- [ Pg.358 ]




SEARCH



Charring

Chars

© 2024 chempedia.info