Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Converter nitric acid

Salicylic acid converts nitric acid to nitrosalicylic acid... [Pg.75]

The mechanism of synergistic effects of 8O2 and NO2 is not clearly understood. It is generally thought that 8O2 inhibits the enzyme nitrate reductase from converting nitric acid to ammonia in the crop. This reduces growth and an accumulation of... [Pg.84]

C (rapid heating). Manufactured by the oxidation of lactose or the galactans from wood with nitric acid. When heated with water it forms a soluble lactone. Converted to furoic... [Pg.266]

CgHgNa. While crystals m.p. 147 C, b.p. 267"C, darken rapidly in air. Prepared by reducing p-nitroaniline or aminoazobenzene. Oxidizing agents convert it to quinone derivatives, hence it cannot be diazotized with nitric acid. [Pg.305]

CfiHi 05 0 C6H4 CH20H. Colourless, bitter crystals, m.p. 20 PC soluble in water and alcohol, insoluble in chloroform. It occurs in the leaves, bark and twigs of species of willow and poplar. On oxidation with dilute nitric acid it is converted into helicin, the glucoside of salicylaldehyde, which has been made the starting point of further syntheses. Gives populin with benzoyl chloride. [Pg.350]

Principle. A known weight of the substance is heated with fuming nitric acid and silver nitrate in a sealed tube. The organic material is thus oxidised to carbon dioxide and water, whilst the halogen is converted quantitatively into the corresponding silver halide. The latter js subsequently washed out of the tube, filtered and weighed. [Pg.416]

Principle. This is essentially a small-scale modification of the macro piethod described on p. 416, the substance being completely oxidised in a sealed tube with fuming nitric acid in the presence of silver nitrate, the halogen being thus converted into silver halide. The collection and weighing of the silver halide require special techniques on the semi-micro scale. [Pg.502]

The function of the sulphuric acid is to furnish a strongly acid medium and to convert the nitric acid into the highly reactive nitronium ion NOj+, which is the real nitrating agent ... [Pg.523]

Nitrations are usually carried out at comparatively low temperatures at higher temperatures there may be loss of material because of the oxidising action of the nitric acid. For substances which do not nitrate readily with a mixture of concentrated nitric and sulphuric acids ( mixed acid ), the intensity of the reaction may be increased inler alia by the use of fuming sulphuric acid (containing up to 60 per cent, of sulphur trioxide) or by fuming nitric acid. Thus nitrobenzene is converted by a mixture of fuming nitric acid and concentrated sulphuric acid into about 90 per cent, of wi-dinitrobenzene and small amounts of the o- and p-isomers the latter are eliminated in the process of recrystallisation ... [Pg.523]

Solutions of nitric acid in 100% sulphuric acid have a high electrical conductivity. If nitric acid is converted into a cation in these solutions, then the migration of nitric acid to the cathode should be observed in electrolysis. This has been demonstrated to occur in oleum and, less conclusively, in concentrated acid, observations consistent with the formation of the nitronium ion, or the mono- or di-protonated forms of nitric acid. Conductimetric measurements confirm the quantitative conversion of nitric acid into nitronium ion in sulphuric acid. ... [Pg.14]

NITRATION IN AQUEOUS SOLUTIONS OF MINERAL ACIDS 2.4.1 The state of nitric acid in aqueous sulphuric acid Nitric acid is completely converted into nitronium ions in concentrated sulphuric acid ( 2.3.1) ... [Pg.19]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

The carboxylic acid produced m the greatest amounts is 1 4 benzenedicarboxylic acid (terephthahc acid) About 5 X 10 Ib/year is produced m the United States as a starting material for the preparation of polyester fibers One important process converts p xylene to terephthahc acid by oxidation with nitric acid... [Pg.806]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Ammonia from coal gasification has been used for fertilizer production at Sasol since the beginning of operations in 1955. In 1964 a dedicated coal-based ammonia synthesis plant was brought on stream. This plant has now been deactivated, and is being replaced with a new faciUty with three times the production capacity. Nitric acid is produced by oxidation and is converted with additional ammonia into ammonium nitrate fertilizers. The products are marketed either as a Hquid or in a soHd form known as Limestone Ammonium Nitrate. Also, two types of explosives are produced from ammonium nitrate. The first is a mixture of fuel oil and porous ammonium nitrate granules. The second type is produced by emulsifying small droplets of ammonium nitrate solution in oil. [Pg.168]

Opa.nte. There are two methods used at various plants in Russia for loparite concentrate processing (12). The chlorination technique is carried out using gaseous chlorine at 800°C in the presence of carbon. The volatile chlorides are then separated from the calcium—sodium—rare-earth fused chloride, and the resultant cake dissolved in water. Alternatively, sulfuric acid digestion may be carried out using 85% sulfuric acid at 150—200°C in the presence of ammonium sulfate. The ensuing product is leached with water, while the double sulfates of the rare earths remain in the residue. The titanium, tantalum, and niobium sulfates transfer into the solution. The residue is converted to rare-earth carbonate, and then dissolved into nitric acid. [Pg.543]

Nitric acid reacts with all metals except gold, iridium, platinum, rhodium, tantalum, titanium, and certain alloys. It reacts violentiy with sodium and potassium to produce nitrogen. Most metals are converted iato nitrates arsenic, antimony, and tin form oxides. Chrome, iron, and aluminum readily dissolve ia dilute nitric acid but with concentrated acid form a metal oxide layer that passivates the metal, ie, prevents further reaction. [Pg.39]

In the first step, propylene is introduced at 10—40°C into nitric acid, the concentration of which is kept at 50—75 wt % and molar ratio to propylene at 0.01—0.5, and converted into a-nitratolactic acid and lactic acid. a-Nitratolactic acid is oxidized by oxygen in the second step in the presence of a catalyst at 45—100°C to produce oxahc acid dihydrate. The overall yield based on propylene is greater than 90% and the conversion of propylene, 77.5%. The outhne of the process is shown in Figure 2. The RhcJ)ne-Poulenc process can be characterized by the coproduction of lactic acid. [Pg.458]

Nitrosyl chloride, a product of the basic reaction, has no commercial value and is converted to salable chlorine and to nitric acid for recycling. [Pg.534]

Pyridine oxide [694-59-7] is converted to 4-nitropyridine oxide in 80—90% yield on heating with concentrated sulfuric acid and filming nitric acid at 100°C (38). [Pg.191]

The y -phenylenediamiaes are easily obtained by dinitrating, followed by catalyticaHy hydrogenating, an aromatic hydrocarbon. Thus, the toluenediamiaes are manufactured by nitrating toluene with a mixture of sulfuric acid, nitric acid, and 23% water at 330°C which first produces a mixture (60 40) of the ortho and para mononitrotoluenes. Further nitration produces the 80 20 mixture of 2,4- and 2,6-dinitrotoluene. Catalytic hydrogenation produces the commercial mixture of diamiaes which, when converted to diisocyanates, are widely used ia the production of polyurethanes (see Amines, aromatic, DIAMINOTOLUENES) (22). [Pg.255]


See other pages where Converter nitric acid is mentioned: [Pg.546]    [Pg.944]    [Pg.2081]    [Pg.269]    [Pg.96]    [Pg.546]    [Pg.944]    [Pg.2081]    [Pg.269]    [Pg.96]    [Pg.164]    [Pg.157]    [Pg.324]    [Pg.472]    [Pg.450]    [Pg.40]    [Pg.298]    [Pg.404]    [Pg.93]    [Pg.243]    [Pg.281]    [Pg.80]    [Pg.219]    [Pg.444]    [Pg.34]    [Pg.35]    [Pg.38]    [Pg.39]    [Pg.42]    [Pg.101]    [Pg.206]    [Pg.496]    [Pg.293]    [Pg.421]   
See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.240 ]




SEARCH



Acid converter

© 2024 chempedia.info