Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion methacrylate

Figure 6.2 shows how the percent conversion of methyl methacrylate to polymer varies with time. These experiments were carried out in benzene at... [Pg.361]

World consumption data by end use in 1987 are shown in Table 8 (39). Solvent appHcations account for the largest use of acetone worldwide, followed by production of acetone cyanohydrin for conversion to methacrylates. Aldol chemicals are derivatives of acetone used mainly as solvents (40). [Pg.97]

The methyl a-hydroxyisobutyrate produced is dehydrated to MMA and water in two stages. First, the methyl a-hydroxyisobutyrate is vaporized and passed over a modified zeoHte catalyst at ca 240°C. A second reactor containing phosphoric acid is operated at ca 150°C to promote esterification of any methacrylic acid (MAA) formed in the first reactor (74,75). Methanol is co-fed to improve selectivity in each stage. Conversions of methyl a-hydroxyisobutyrate are greater than 99%, with selectivities to MMA near 96%. The reactor effluent is extracted with water to remove methanol and yield cmde MMA. This process has not yet been used on a commercial scale. [Pg.252]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Only with propanal are very high conversions (99%) and selectivity (> 98 0) to MMA and MAA possible at this time. Although nearly 95% selective, the highest reported conversions with propionic acid or methyl propionate are only 30—40%. This results in large recycle streams and added production costs. The propanal route suffers from the added expense of the additional step required to oxidize methacrolein to methacrylic acid. [Pg.253]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

The oxidation of methacrolein to methacrylic acid is most often performed over a phosphomolybdic acid-based catalyst, usually with copper, vanadium, and a heavy alkaU metal added. Arsenic and antimony are other common dopants. Conversions of methacrolein range from 85—95%, with selectivities to methacrylic acid of 85—95%. Although numerous catalyst improvements have been reported since the 1980s (120—123), the highest claimed yield of methacryhc acid (86%) is still that described in a 1981 patent to Air Products (124). [Pg.253]

Several variations of the above process are practiced. In the Sumitomo-Nippon Shokubai process, the effluent from the first-stage reactor containing methacrolein and methacrylic acid is fed directiy to the second-stage oxidation without isolation or purification (125,126). In this process, overall yields are maximized by optimizing selectivity to methacrolein plus methacrylic acid in the first stage. Conversion of isobutjiene or tert-huty alcohol must be high because no recycling of material is possible. In another variation, Asahi Chemical has reported the oxidative esterification of methacrolein directiy to MMA in 80% yield without isolation of the intermediate MAA (127,128). [Pg.253]

The chemical resistance and excellent light stabiUty of poly(methyl methacrylate) compared to two other transparent plastics is illustrated in Table 5 (25). Methacrylates readily depolymerize with high conversion, ie, 95%, at >300° C (1,26). Methyl methacrylate monomer can be obtained in high yield from mixed polymer materials, ie, scrap. [Pg.262]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

The DADC monomer has been copolymerized with small amounts of polyfunctional methacryflc or acryflc monomers. For example, 3% triethylene glycol dimethacrylate was used as a flexibiflzing, cross-linking agent with a percarbonate as initiator (26). CR-39 and diethylene glycol diacrylate containing isopropyl percarbonate were irradiated with a mercury lamp to a 92% conversion and then cured at 150°C (27). By a similar two-step process DADC was copolymerized with methyl methacrylate and tetraethylene glycol dimethacrylate (28). [Pg.83]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
Methyl Methacrylate and Methacryhc Acid. The traditional production of methyl methacrylate [80-62-6] and methacryhc acid [79-41-4] involves the reaction of acetone with HCN and subsequent conversion to methyl ester and by-product ammonium bisulfate. Older plants in the United States with capacities in the range of 380,000 t/yr stUl use this process. [Pg.373]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

The outstanding chemical property of cyanohydrins is the ready conversion to a-hydroxy acids and derivatives, especially a-amino and a,P-unsaturated acids. Because cyanohydrins are primarily used as chemical intermediates, data on production and prices are not usually pubUshed. The industrial significance of cyanohydrins is waning as more direct and efficient routes to the desired products are developed. Acetone cyanohydrin is the world s most prominent industrial cyanohydrin because it offers the main route to methyl methacrylate manufacture. [Pg.410]

Conversion of acetone cyanohydrin to methyl methacrylate produces a large amount of ammonium bisulfate by-product which lacks ready marketabihty and is usually converted to sulfuric acid for reuse in the conversion of acetone cyanohydrin to methacrylates. The nitrogen values of the... [Pg.414]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

It has been observed that in the polymerisaton of methyl methacrylate there is an acceleration in the rate of conversion after about 20% of the monomer has been converted. The average molecular weight of the polymer also increases during polymerisation. It has been shown that these results are obtained even under conditions where there is a negligible rise in the temperature (<1°C) of the reaction mixture. [Pg.402]

However, in the case of a-substituted unsaturated esters (4), as for example methacrylic or tiglic acid esters, diazomethane addition results in the formation of stable A pyrazolines (5). The latter products require halogen acids for conversion to the isomeric nonconjugated A -pyrazolines (6). [Pg.100]

In most ionomers, it is customary to fully convert to the metal salt form but, in some instances, particularly for ionomers based on a partially crystalline homopolymer, a partial degree of conversion may provide the best mechanical properties. For example, as shown in Fig. 4, a significant increase in modulus occurs with increasing percent conversion for both Na and Ca salts of a poly(-ethylene-co-methacrylic acid) ionomer and in both cases, at a partial conversion of 30-50%, a maximum value, some 5-6 times higher than that of the acid copolymer, is obtained and this is followed by a subsequent decrease in the property [12]. The tensile strength of these ionomers also increases significantly with increasing conversion but values tend to level off at about 60% conversion. [Pg.148]

Figure 4 Secant modulus versus percent conversion for Na and Ca salts of an ethylene/methacrylic acid ionomer. Figure 4 Secant modulus versus percent conversion for Na and Ca salts of an ethylene/methacrylic acid ionomer.
For partially crystalline ionomers, such as those based on copolymers of ethylene and methacrylic acid, even time or aging at room temperature can have an effect on mechanical properties. For example, upon aging at 23°C, the modulus of the acid form of the copolymer increased 28%, while in the ionomer form, the increase ranged up to 130%, with the specific gain in modulus depending on the degree of conversion and on the counterion that was present [17]. [Pg.149]

For low conversions, values of the rate constants kt for monosubstituted monomers (S and acrylates) are -10s M V and those for methacrylates arc 107 NT s 1 and activation energies are small and in the range 3-8 kJ mof1.17 These activation energies relate to the rate-determining diffusion process (Section... [Pg.238]

Cyclopolymerization of the bis-methacrylates (10, ll)6" 6j or bis-styrene derivatives (12)64 has been used to produce heterotactic polymers and optically active atactic polymers. Cyclopolymcrization of racemic 13 by ATRP with a catalyst based on a chiral ligand (Scheme 8.12) gave preferential conversion of the (S, )-enantiomer. 66... [Pg.424]

The thermal decomposition of the phenylelhyl alkoxyamine with TEMPO and the fraction of living ends in TEMPO-mediated S polymerization has been studied by Priddy and coworkers.143 179 They concluded that to achieve >90% living ends conversions and/or nitroxide concentrations should be chosen to give V/ less than 10000.143 However, disproportionation or elimination is most important during polymerizations of methacrylates and accounts for NMP being less successful with... [Pg.478]

Only a few quantitative data are available on copolymerization of methacrylates. Direct determination of the cross-propagation constants is readily achieved in living polymer systems whenever the absorption spectra of the two propagating species are different. Unfortunately, this is not the case in the methacrylate series. A new approach to this problem was developed by Muller 43). A mixture of two monomers is copolymerized, the reaction is interrupted at various times, and the concentrations of the residual monomers are determined as functions of time. The pertinent differential equations include 4 constants ku, k12, k21, and k22. Since kn and k22 were independently determined, the remaining cross-propagation constants are obtained by computer fitting the experimental conversion curves to the calculated ones. [Pg.111]

In the literature there is only one serious attempt to develop a detailed mechanistic model of free radical polymerization at high conversions (l. > ) This model after Cardenas and 0 Driscoll is discussed in some detail pointing out its important limitations. The present authors then describe the development of a semi-empirical model based on the free volume theory and show that this model adequately accounts for chain entanglements and glassy-state transition in bulk and solution polymerization of methyl methacrylate over wide ranges of temperature and solvent concentration. [Pg.43]

Balke, S.T., "The Free Radical Polymerization of Methyl Methacrylate to High Conversion", Ph.D. Thesis, McMaster University, Hamilton, Ontario (1972). [Pg.69]


See other pages where Conversion methacrylate is mentioned: [Pg.139]    [Pg.139]    [Pg.470]    [Pg.182]    [Pg.251]    [Pg.251]    [Pg.255]    [Pg.255]    [Pg.436]    [Pg.88]    [Pg.43]    [Pg.402]    [Pg.828]    [Pg.325]    [Pg.751]    [Pg.180]    [Pg.78]    [Pg.26]    [Pg.33]    [Pg.98]    [Pg.104]    [Pg.105]    [Pg.154]    [Pg.31]   
See also in sourсe #XX -- [ Pg.203 , Pg.205 ]




SEARCH



Methyl methacrylate conversion dependence

Methyl methacrylate high conversion polymerization

Methyl methacrylate high-conversion

Methyl methacrylate limiting conversion

© 2024 chempedia.info