Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid surface contamination

Surface defects (Section VII-4C) are also influenced by the history of the sample. Such imperfections may to some extent be reversibly affected by processes such as adsorption so that it is not safe to regard even a refractory solid as having fixed surface actions. Finally, solid surfaces are very easily contaminated detection of contamination is aided by ultra-high-vacuum techniques and associated cleaning protocols [24]. [Pg.259]

Contaminant transfer to bed sediments represents another significant transfer mechanism, especially in cases where contaminants are in the form of suspended solids or are dissolved hydrophobic substances that can become adsorbed by organic matter in bed sediments. For the purposes of this chapter, sediments and water are considered part of a single system because of their complex interassociation. Surface water-bed sediment transfer is reversible bed sediments often act as temporary repositories for contaminants and gradually rerelease contaminants to surface waters. Sorbed or settled contaminants are frequently transported with bed sediment migration or flow. Transfer of sorbed contaminants to bottomdwelling, edible biota represents a fate pathway potentially resulting in human exposure. Where this transfer mechanism appears likely, the biotic fate of contaminants should be assessed. [Pg.237]

Trace contaminants are also significant at charged solid surfaces, affecting both the charging process and the surface conductivity. In ambient air atmospheres their effect is often determined by interaction with adsorbed water vapor, whose dominant concentration may be sufficiently large to form a monolayer. Topical antistatic agents for solids typically rely on interaction with adsorbed water and can lose effectiveness at low relative humidity (4-2.1). [Pg.10]

Before 1950, it was impossible to examine the true structure of a solid surface, because, even if a surface is cleaned by flash-heating, the atmospheric molecules which constantly bombard a solid surface very quickly re-form an adsorbed monolayer, which is likely to alter the underlying structure. Assuming that all incident molecules of oxygen or nitrogen stick to the surface, a monolayer will be formed in 3 x 10 second at 1 Torr (=1 mm of mercury), that is, at 10 atmosphere a monolayer forms in 3 s at 10 Torr, or 10 atmosphere but a complete monolayer takes about an hour to form at 10 Torr. The problem was that in 1950, a vacuum of 10" Torr was not achievable lO Torr was the limit, and that only provided a few minutes grace before an experimental surface became wholly contaminated. [Pg.404]

On the other hand, potential measurements at the free surface of purified water have shown50 that the value for a flowing surface differs by about 0.3 V from that for a quiescent surface, as a result of adsorption of surface-active residual impurities in the solution (probably also coming from the gas phase). Since emersed electrodes drag off the surface layer of the solution as they come out of the liquid phase, the liquid layer attached to emersed solid surfaces might also be contaminated. [Pg.14]

There is considerable experimental evidence indicating loss of biological activity of macromolecules such as globular proteins and enzymes at gas-Hquid [57], liquid-solid (Fig. 26) [107] and liquid-liquid [108] interfaces. The extent of inactivation has been shown to be strongly influenced by the prevailing flow field and by, many other factors including the presence and/or absence of additives and contaminants and the type of solid surfaces (Figs. 27 and 28) [107]. [Pg.114]

This strnctnring of liqnids into discrete layers when confined by a solid surface has been more readily observable in liquid systems other than water [1,55]. In fact, such solvation forces in water, also known as hydration forces, have been notoriously difficult to measure due to the small size of the water molecule and the ease with which trace amounts of contamination can affect the ordering. However, hydration forces are thought to be influential in many adhesive processes. In colloidal and biological systems, the idea that the hydration layer mnst be overcome before two molecules, colloidal particles, or membranes can adhere to each other is prevalent. This implies that factors affecting the water structure, such as the presence of salts, can also control adhesive processes. [Pg.37]

An ultraclean environment is another major reason for generating high vacuum. At atmospheric pressure, every atom on a solid surface is bombarded with gas molecules at a rate of trillions per second. Even under a reasonably high vacuum, 10 atm, a gas molecule strikes every atom on a solid surface about once per second. If the surface is reactive, these collisions result in chemical reactions that contaminate the surface. The study of pure surfaces of metals or semiconductors requires ultrahigh vacuum, with pressures on the order of 10 atm. [Pg.309]

These characteristics favor the attachment of bacteria to solid surfaces in the form of biofilm so that nutrients flowing in the groundwater can be used. The presence of low nutrient levels in the groundwater also implies that bacteria must regularly use many different compounds as energy sources and, consequently, may select organic contaminants more readily as nutrients. [Pg.833]

An example of enhancement in mass transfer by acoustic cavitation is the increase in the limiting current density in electrolysis [79], The electrochemistry with ultrasound is called sonoelectrochemistry. Another example is ultrasonic cleaning [80], Soluble contaminants on a solid surface dissolve into the liquid faster with acoustic cavitation. Insoluble contaminants are also removed from a solid surface with ultrasound. This is also induced by acoustic cavitation in many cases, but in some other cases it is by acoustic streaming [81-85],... [Pg.20]

The partitioning exhibited through the Henry s Law constant can be used to estimate the vaporization of various PCB contaminants from solid surfaces. In the presence of water, organic compounds volatilize more rapidly than would be expected based upon vaporization of the pure compound. This tendency accounts for the presence of low vapor pressure contaminants, such as the PCBs, in the atmosphere at higher concentrations than one would estimate from the chemistry of the pure compounds [403,408,409]... [Pg.284]

Several other explanations have been put advanced to explain retention hysteresis, including (1) surface precipitation of metallic cations whose hydroxides, phosphates, or carbonates are sparingly soluble (2) chemical reactions with solid surfaces, including organic surfaces, which form complexes with metallic cations and (3) incorporation into the subsurface organic matter through chemical reactions and biochemical transformation. For the case described by Fig. 5.9 or explanations (1) and (2), the contaminant release always exhibits a hysteresis... [Pg.121]

One way that contaminants are retained in the subsurface is in the form of a dissolved fraction in the subsurface aqueous solution. As described in Chapter 1, the subsurface aqueous phase includes retained water, near the solid surface, and free water. If the retained water has an apparently static character, the subsurface free water is in a continuous feedback system with any incoming source of water. The amount and composition of incoming water are controlled by natural or human-induced factors. Contaminants may reach the subsurface liquid phase directly from a polluted gaseous phase, from point and nonpoint contamination sources on the land surface, from already polluted groundwater, or from the release of toxic compounds adsorbed on suspended particles. Moreover, disposal of an aqueous liquid that contains an amount of contaminant greater than its solubility in water may lead to the formation of a type of emulsion containing very small droplets. Under such conditions, one must deal with apparent solubility, which is greater than handbook contaminant solubility values. [Pg.127]

In the previous sections of this book, we focused on the nature of contaminants and the geochemical reactions that can occur in the subsurface environment. Chemical compounds introduced into infiltrating water or in contact with soil or rock surfaces are subject to chemically and biologically induced transformations. Other compounds are retained by the soil constituents as sorbed or bound residues. Thus, in terms of geochemical interactions and reactions among dissolved chemical species, interphase transfer occurs in the form of dissolution, precipitation, volatilization, and various forms of physicochemical retention on the solid surfaces. [Pg.212]

A heterogeneous natural system such as the subsurface contains a variety of solid surfaces and dissolved constituents that can catalyze transformation reactions of contaminants. In addition to catalytically induced oxidation of synthetic organic pollutants, which are enhanced mainly by the presence of clay minerals, transformation of metals and metalloids occurs with the presence of catalysts such as Mn-oxides and Fe-containing minerals. These species can alter transformation pathways and rates through phase partitioning and acid-base and metal catalysis. [Pg.295]

If the concentration of metal contaminant is very high, the spiU is old, or the site has a history of spills, multiple apphcations of Metraxt will be necessary to get acceptable results. It is not uncommon when analyzing before and after the first few treatments to get higher readings due to the product s ability to extract metals from solid surfaces. [Pg.702]

We begin with a discussion of the most common minerals present in Earth s crust, soils, and troposphere, as well as some less common minerals that contain common environmental contaminants. Following this is (1) a discussion of the nature of environmentally important solid surfaces before and after reaction with aqueous solutions, including their charging behavior as a function of solution pH (2) the nature of the electrical double layer and how it is altered by changes in the type of solid present and the ionic strength and pH of the solution in contact with the solid and (3) dissolution, precipitation, and sorption processes relevant to environmental interfacial chemistry. We finish with a discussion of some of the factors affecting chemical reactivity at mineral/aqueous solution interfaces. [Pg.461]

Other advantages of using mercury (or any other liquid metal) as an electrode are prevention of surface contaminants and surface reproducibility. If a mercuiy-drop electrode is used, eveiy time a drop falls and a new drop forms, the electrode presents a virgin surface to the solution. With a simple capillary connected to a reservoir, contamination problems are circumvented. Also, the use of liquid metals removes complications from the characteristic structure and topography present in solid surfaces. Liquid surfaces are nonstructured and highly reproducible. [Pg.131]


See other pages where Solid surface contamination is mentioned: [Pg.303]    [Pg.374]    [Pg.412]    [Pg.3]    [Pg.27]    [Pg.464]    [Pg.276]    [Pg.138]    [Pg.1120]    [Pg.374]    [Pg.81]    [Pg.17]    [Pg.33]    [Pg.440]    [Pg.592]    [Pg.647]    [Pg.739]    [Pg.8]    [Pg.21]    [Pg.417]    [Pg.22]    [Pg.591]    [Pg.287]    [Pg.17]    [Pg.49]    [Pg.24]    [Pg.427]    [Pg.80]    [Pg.166]    [Pg.553]    [Pg.307]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Contaminants/contamination surface

Contaminated surface

Contamination, surface

Solid Contaminations

Solid surface contaminants, effect

© 2024 chempedia.info