Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation-extension

The enolates of other carbonyl compounds can be used in mixed aldol condensations. Extensive use has been made of the enolates of esters, thioesters, amides, nitriles, and nitroalkanes. Scheme 2.4 gives a selection of such reactions. [Pg.68]

The soda/AQ hardwood lignin is constituted of both guaiacyl (2) and syringylpropanoid (3) units, of which the former have been condensed extensively during pulping (17). This is indicated by the low number of unsubstituted 5-positions (Table II). [Pg.358]

The enolates of other carbonyl compounds can be used in mixed aldol condensations. Extensive use has been made of the enolates of esters, thioesters, and amides. Of particular importance are several modified amides, such as those derived from oxazolidinones, that can be used as chiral auxiliaries. The methods for formation of these enolates are similar to those for ketones. Lithium, boron, tin, and titanium derivatives have all been used. Because of their usefulness in aldol additions and other synthetic methods (see especially Section 6.4.2.3, Part B), there has been a good deal of interest in the factors that control the stereoselectivity of enolate formation from esters. For simple esters such as ethyl propanoate, the E-enolate is preferred under kinetic conditions using a strong base such as EDA in THE solution. Inclusion of a... [Pg.692]

Two different databases provided ehlorinated solvent site data. The first database, the Hydrogeologic Database (HGDB), provided information on plume length, plume width, plume thickness, and highest solvent eoneentration for 109 chlorinated solvent sites. The second database condensed extensive site characterization data from 17 Air Force chlorinated solvent sites, with information on parent compounds vs. progeny products concentrations, competing electron acceptors, hydrogen, and metabolic by-products. [Pg.1602]

If necessary, transfer the colourless liquid obtained by wet oxidation to the flask of a distillation apparatus, consisting of a 100-ml or 200-ml Kjeldahl flask of resistance glass or silica, with a ground-in condenser, into which has been blown a tap funnel as shown in Fig. 1 (it is an advantage to have the condenser interchangeable with the condensing extension to the decomposition flask so that the arsenic can be distilled from the same flask in which the wet decomposition was carried out). [Pg.84]

Appendix C-5 lists selected UNIQUAC binary parameters and characteristic binary parameters for noncondensable-condensable interactions for 150 binary pairs. For any binary pair, the parameters shown are believed to be the best now available. Parameters listed here were chosen from the more extensive lists in Appendix C-6 and C-7. A12 and A21 correspond to the UNIQUAC... [Pg.144]

As stated in the introduction to the previous chapter, adsorption is described phenomenologically in terms of an empirical adsorption function n = f(P, T) where n is the amount adsorbed. As a matter of experimental convenience, one usually determines the adsorption isotherm n = fr(P), in a detailed study, this is done for several temperatures. Figure XVII-1 displays some of the extensive data of Drain and Morrison [1]. It is fairly common in physical adsorption systems for the low-pressure data to suggest that a limiting adsorption is being reached, as in Fig. XVII-la, but for continued further adsorption to occur at pressures approaching the saturation or condensation pressure (which would be close to 1 atm for N2 at 75 K), as in Fig. XVII-Ih. [Pg.599]

The treatment of equilibrium solvation effects in condensed-phase kmetics on the basis of TST has a long history and the literature on this topic is extensive. As the basic ideas can be found m most physical chemistry textbooks and excellent reviews and monographs on more advanced aspects are available (see, for example, the recent review article by Tnihlar et al [6] and references therein), the following presentation will be brief and far from providing a complete picture. [Pg.832]

In this chapter many of the basic elements of condensed phase chemical reactions have been outlined. Clearly, the material presented here represents just an overview of the most important features of the problem. There is an extensive literature on all of the issues described herein and, more importantly, there is still much work to be done before a complete understanding of the effects of condensed phase enviromnents on chemical reactions can be achieved. The theorist and experimentalist alike can therefore look forward to many more years of exciting and challenging research in this important area of physical chemistry. [Pg.895]

The tenn represents an externally applied potential field or the effects of the container walls it is usually dropped for fiilly periodic simulations of bulk systems. Also, it is usual to neglect v - and higher tenns (which m reality might be of order 10% of the total energy in condensed phases) and concentrate on For brevity henceforth we will just call this v(r). There is an extensive literature on the way these potentials are detennined experimentally, or modelled... [Pg.2243]

While the classical approach to simulation of slow activated events, as described above, has received extensive attention in the literature and the methods are in general well established, the methods for quantum-dynamical simulation of reactive processes in complex systems in the condensed phase are still under development. We briefly consider electron and proton quantum dynamics. [Pg.15]

By the condensation of a nitrile with a phenol or phenol ether in the presence of zinc chloride and hydrogen chloride a hydroxyaryl- or alkoxyaryl-ketone is produced. The procedure is termed the Hoesch reaction and is clearly an extension of the Gattermann aldehyde reaction (Section IV,121). The reaction gives the best results with polyhydric phenols and their ethers with simple monohydric phenols the imino ester hydrochloride is frequently the sole product for example ... [Pg.727]

Very few 4-aminothiazoles have been synthetized directly. The reaction of a-halonitriles with thioamides generally fails and only extensive decomposition results. However, the benzene sulfonic ester of mandelonit-rile reacts with thiobenzamide to give 2,5-diphenyl-4-aminothiazole (257), Ri = R2 = Ph, in 37% yield (Scheme 132) (417) Similarly, a-cyano-a-acetylthioacetamide condensed with a-chloroacetonitrile give 257, Ri = CH(CN)CH3 and R2 = H (804). [Pg.301]

In this section we turn to a consideration of the experimental side of condensation kinetics. The kind of ab links which have been most extensively studied are ester and amide groups, although numerous additional systems could also be cited. In many of these the carbonyl group is present and is believed to play an important role in stabilizing the actual chemical transition state involved in the reactions. The situation can be represented by the following schematic reaction ... [Pg.282]

Although acetic acid and water are not beheved to form an azeotrope, acetic acid is hard to separate from aqueous mixtures. Because a number of common hydrocarbons such as heptane or isooctane form azeotropes with formic acid, one of these hydrocarbons can be added to the reactor oxidate permitting separation of formic acid. Water is decanted in a separator from the condensate. Much greater quantities of formic acid are produced from naphtha than from butane, hence formic acid recovery is more extensive in such plants. Through judicious recycling of the less desirable oxygenates, nearly all major impurities can be oxidized to acetic acid. Final acetic acid purification follows much the same treatments as are used in acetaldehyde oxidation. Acid quahty equivalent to the best analytical grade can be produced in tank car quantities without difficulties. [Pg.68]

The fused 3+ ring aromatics in petroleum include both cata- and peri-condensed stmctures (see Table 4, Fig. 8). The cata-condensed species are those stmctures where only one face is shared between rings, the peri-condensed molecules are those that share more than one face. The fused ring aromatics form the class of compounds known as polynuclear aromatic hydrocarbons (PAH) which includes a number of recognized carcinogens in the 4+ ring family (33). Because of the potential health and environmental impact of PAH, these compounds have been studied extensively in petroleum. [Pg.171]


See other pages where Condensation-extension is mentioned: [Pg.446]    [Pg.518]    [Pg.129]    [Pg.71]    [Pg.518]    [Pg.30]    [Pg.901]    [Pg.446]    [Pg.518]    [Pg.129]    [Pg.71]    [Pg.518]    [Pg.30]    [Pg.901]    [Pg.328]    [Pg.81]    [Pg.850]    [Pg.883]    [Pg.889]    [Pg.2292]    [Pg.3033]    [Pg.14]    [Pg.366]    [Pg.367]    [Pg.509]    [Pg.24]    [Pg.12]    [Pg.218]    [Pg.1141]    [Pg.346]    [Pg.124]    [Pg.428]    [Pg.194]    [Pg.440]    [Pg.313]    [Pg.34]    [Pg.44]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



© 2024 chempedia.info