Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensed-phase reactions, chemical

As these examples have demonstrated, in particular for fast reactions, chemical kinetics can only be appropriately described if one takes into account dynamic effects, though in practice it may prove extremely difficult to separate and identify different phenomena. It seems that more experiments under systematically controlled variation of solvent enviromnent parameters are needed, in conjunction with numerical simulations that as closely as possible mimic the experimental conditions to improve our understanding of condensed-phase reaction kmetics. The theoretical tools that are available to do so are covered in more depth in other chapters of this encyclopedia and also in comprehensive reviews [6, 118. 119],... [Pg.863]

Experimental determination of Ay for a reaction requires the rate constant k to be determined at different pressures, k is obtained as a fit parameter by the reproduction of the experimental kinetic data with a suitable model. The data are the concentration of the reactants or of the products, or any other coordinate representing their concentration, as a function of time. The choice of a kinetic model for a solid-state chemical reaction is not trivial because many steps, having comparable rates, may be involved in making the kinetic law the superposition of the kinetics of all the different, and often unknown, processes. The evolution of the reaction should be analyzed considering all the fundamental aspects of condensed phase reactions and, in particular, beside the strictly chemical transformations, also the diffusion (transport of matter to and from the reaction center) and the nucleation processes. [Pg.153]

A schematic representation of the combustion wave structure of a typical energetic material is shown in Fig. 3.9 and the heat transfer process as a function of the burning distance and temperature is shown in Fig. 3.10. In zone I (solid-phase zone or condensed-phase zone), no chemical reactions occur and the temperature increases from the initial temperature (Tq) to the decomposition temperature (T ). In zone II (condensed-phase reaction zone), in which there is a phase change from solid to liquid and/or to gas and reactive gaseous species are formed in endothermic or exothermic reactions, the temperature increases from T to the burning surface temperature (Tf In zone III (gas-phase reaction zone), in which exothermic gas-phase reactions occur, the temperature increases rapidly from Tj to the flame temperature (Tg). [Pg.55]

Although the traditional approach of transition structure determination and reaction path following is perfectly suited for gas phase reactions, which can also provide major insight into the mechanism of condensed phase reactions, (14-16) it is also important to specifically consider the fluctuation and collective solvent motions accompanying the chemical transformation in solution.(17, 18) One approach that has been used to address this problem is the use of an energy-gap reaction coordinate, A. -... [Pg.248]

Heterogeneous chemistry involves a number of processes that combine the overall rale of transport and chemical conversion between the gas and condensed phases. These processes include (a) gas diffusion to the surface of the aerosol, (b) accommodation ("sticking") at the surface, (c) diffusion within the condensed phase, (d) chemical reaction in the condensed phase, and (e) diffusion of the resultant products to the surface and evaporation from the interface. [Pg.269]

Ray Kapral came to Toronto from the United States in 1969. His research interests center on theories of rate processes both in systems close to equilibrium, where the goal is the development of a microscopic theory of condensed phase reaction rates,89 and in systems far from chemical equilibrium, where descriptions of the complex spatial and temporal reactive dynamics that these systems exhibit have been developed.90 He and his collaborators have carried out research on the dynamics of phase transitions and critical phenomena, the dynamics of colloidal suspensions, the kinetic theory of chemical reactions in liquids, nonequilibrium statistical mechanics of liquids and mode coupling theory, mechanisms for the onset of chaos in nonlinear dynamical systems, the stochastic theory of chemical rate processes, studies of pattern formation in chemically reacting systems, and the development of molecular dynamics simulation methods for activated chemical rate processes. His recent research activities center on the theory of quantum and classical rate processes in the condensed phase91 and in clusters, and studies of chemical waves and patterns in reacting systems at both the macroscopic and mesoscopic levels. [Pg.248]

The understanding of chemical reaction mechanisms in solution is often based on the nature of the interactions between reactants and solvent, which are governed by the physical properties of molecules, such as polarity, or by the possibility of bonds formation (e.g., hydrogen-bonding) and their dynamical evolution. The goal of the majority of works on molecular clusters is to try to fill the gap between the gas phase reaction and the condensed phase reaction by a step-by-step solvation of the reactive system. This approach will give useful... [Pg.116]

The development of environmentally acceptable incineration technologies for the disposal of hazardous wastes is dependent on an understanding of the roles of (1) atomization or method of introduction of the waste materials, (2) evaporation and condensed-phase reactions of the waste droplets in the incinerator environment, (3) turbulent mixing in the incinerator, (4) kinetics of the thermal degradation and oxidation of the chemical species in question, and (5) heat transfer in the incinerator. [Pg.288]

Nov. 21, 1931, Tbilisi, Georgia, USSR - May 13, 1985) Dogonadze was one of the founders of the new science - electrochemical physics [i]. The main scientific interests of Dogonadze were focused on condensed-phase reactions. His pioneering works of 1958-59 have laid the foundations of the modern quantum-mechanical theory of elementary chemical processes in electrolyte solutions. He developed a comprehensive quantum-mechanical theory of the elementary act of electrochemical reactions of -> electron and -> proton transfer at metal and - semiconductor electrodes [ii—v]. He was the first to obtain, by a quantum-mechanical calculation, the expression for the electron transfer probability, which was published in 1959 in his work with -> Levich. He conducted a number of studies on the theory of low-velocity electrons in disordered systems, theory of solvated electrons, and theory of photochemical processes in solutions. He made an impressive contribution to the theory of elementary biochemical processes [vi]. His work in this area has led to the foundation of the theory of low-temperature -> charge-transfer processes cov-... [Pg.166]

First principle mathematical models These models solve the basic conservation equations for mass and momentum in their form as partial differential equations (PDEs) along with some method of turbulence closure and appropriate initial and boundary conditions. Such models have become more common with the steady increase in computing power and sophistication of numerical algorithms. However, there are many potential problems that must be addressed. In the verification process, the PDEs being solved must adequately represent the physics of the dispersion process especially for processes such as ground-to-cloud heat transfer, phase changes for condensed phases, and chemical reactions. Also, turbulence closure methods (and associated boundary and initial conditions) must be appropriate for the dis-... [Pg.2566]

Most of the discussion in this chapter is based on a classical mechanics description of chemical reactions. Such classical pictures are relevant to many condensed phase reactions at and above room temperature and, as we shall see, can be generalized when needed to take into account the discrete nature of molecular states. In some situations quantum effects dominate and need to be treated explicitly. This is the case, for example, when tunneling is a rate determining process. Another important class is nonadiabatic reactions, where the rate detennining process is hopping (curve crossing) between two electronic states. Such reactions are discussed in Chapter 16 (see also Section 14.3.5). [Pg.484]

It is important to realize that not only does the solvent environment modify the equilibrium properties and the dynamics of the chemical process, it often changes the nature of the process and therefore the questions we ask about it. The principal object in a bimolecular gas phase reaction is the collision process between the molecules involved. In studying such processes we focus on the relation between the final states of the products and the initial states of the reactants, averaging over the latter when needed. Questions of interest include energy flow between different degrees of freedom, mode selectivity, and yields of different channels. Such questions could be asked also in condensed phase reactions, however, in most circumstances the associated observable cannot be directly monitored. Instead questions concerning the effect of solvent dynamics on the reaction process and the inter-relations between reaction dynamics and solvation, diffusion and heat transport become central. [Pg.726]

Committee E-27, Hazard Potential of Chemicals, was formed in 1967, in response to the need for some agency to develop standardization techniques for the evaluation of the potential of chemicals to cause fires and explosions. Several subcommittees were formed and the one on Condensed Phase Reactions was given the assignment of devising a computational method for screening chemicals for their ability to cause an explosion. The task group that wrote the program, now... [Pg.84]


See other pages where Condensed-phase reactions, chemical is mentioned: [Pg.883]    [Pg.895]    [Pg.898]    [Pg.3069]    [Pg.184]    [Pg.189]    [Pg.114]    [Pg.64]    [Pg.160]    [Pg.184]    [Pg.74]    [Pg.384]    [Pg.126]    [Pg.225]    [Pg.163]    [Pg.101]    [Pg.334]    [Pg.2040]    [Pg.550]    [Pg.319]    [Pg.170]    [Pg.11]    [Pg.334]    [Pg.228]    [Pg.234]    [Pg.353]    [Pg.883]    [Pg.895]    [Pg.898]   


SEARCH



Chemical condensation

Chemical reaction phase

Chemical reactions condensation

Condensed phases

Condensed-phase reaction

Phase chemical

Phase condensation

© 2024 chempedia.info