Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensations defined

Convergent synthesis, segment condensation, fragment condensation, defined as the construction of the target stmcture by final assembly of separately synthesized intermediate segments. [Pg.85]

Figure 1 gives an enthalpy-concentration diagram for ethanol(1)-water(2) at 1 atm. (The reference enthalpy is defined as that of the pure liquid at 0°C and 1 atm.) In this case both components are condensables. The liquid-phase enthalpy of mixing... [Pg.89]

The case of a vapor adsorbing on its own liquid surface should certainly correspond to mobile adsorption. Here, 6 is unity and P = the vapor pressure. The energy of adsorption is now that of condensation Qu, and it will be convenient to define the Langmuir constant for this case as thus, from Eq. xvn-39. [Pg.611]

Traditionally one categorizes matter by phases such as gases, liquids and solids. Chemistry is usually concerned with matter m the gas and liquid phases, whereas physics is concerned with the solid phase. However, this distinction is not well defined often chemists are concerned with the solid state and reactions between solid-state phases, and physicists often study atoms and molecular systems in the gas phase. The tenn condensed phases usually encompasses both the liquid state and the solid state, but not the gas state. In this section, the emphasis will be placed on the solid state with a brief discussion of liquids. [Pg.86]

Since and depend only on die valence charge densities, they can be detennined once the valence pseudo- wavefiinctions are known. Because the pseudo-wavefiinctions are nodeless, the resulting pseudopotential is well defined despite the last temi in equation Al.3.78. Once the pseudopotential has been constructed from the atom, it can be transferred to the condensed matter system of interest. For example, the ionic pseudopotential defined by equation Al.3.78 from an atomistic calculation can be transferred to condensed matter phases without any significant loss of accuracy. [Pg.112]

At the limit of extremely low particle densities, for example under the conditions prevalent in interstellar space, ion-molecule reactions become important (see chapter A3.51. At very high pressures gas-phase kinetics approach the limit of condensed phase kinetics where elementary reactions are less clearly defined due to the large number of particles involved (see chapter A3.6). [Pg.759]

Cluster research is a very interdisciplinary activity. Teclmiques and concepts from several other fields have been applied to clusters, such as atomic and condensed matter physics, chemistry, materials science, surface science and even nuclear physics. Wlrile the dividing line between clusters and nanoparticles is by no means well defined, typically, nanoparticles refer to species which are passivated and made in bulk fonn. In contrast, clusters refer to unstable species which are made and studied in the gas phase. Research into the latter is discussed in the current chapter. [Pg.2388]

The following short descriptions of the steps involved in the synthesis of a tripeptide will demonstrate the complexity of the problem amino acid units. In the later parts of this section we shall describe actual syntheses of well defined oligopeptides by linear elongation reactions and of less well defined polypeptides by fragment condensation. [Pg.228]

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. [Pg.532]

Chapter 3, there is often a region immediately preceding the lower closure point, in which increased adsorption is brought about by reversible capillary condensation. The meniscus now tends to be somewhat ill defined owing to its small dimensions (p. 153), but the mechanism can still be thought of in Kelvin terms, where the driving force is the pressure difference across an interface. [Pg.244]

The way in which these factors operate to produce Type III isotherms is best appreciated by reference to actual examples. Perhaps the most straightforward case is given by organic high polymers (e.g. polytetra-fluoroethylene, polyethylene, polymethylmethacrylate or polyacrylonitrile) which give rise to well defined Type III isotherms with water or with alkanes, in consequence of the weak dispersion interactions (Fig. S.2). In some cases the isotherms have been measured at several temperatures so that (f could be calculated in Fig. 5.2(c) the value is initially somewhat below the molar enthalpy of condensation and rises to qi as adsorption proceeds. In Fig. 5.2(d) the higher initial values of q" are ascribed to surface heterogeneity. [Pg.249]

Type V isotherms of water on carbon display a considerable variety of detail, as may be gathered from the representative examples collected in Fig. 5.14. Hysteresis is invariably present, but in some cases there are well defined loops (Fig. 5.14(b). (t ), (capillary-condensed water. Extreme low-pressure hysteresis, as in Fig. 5.14(c) is very probably due to penetration effects of the kind discussed in Chapter 4. [Pg.266]

Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1. Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1.
The mechanism by which tin flame retardants function has not been well defined, but evidence indicates tin functions in both the condensed and vapor phases. In formulations in which there is at least a 4-to-l mole ratio of halogen to tin, reactions similar to those of antimony and halogen are assumed to occur. Volatile stannic tetrahaUde may form and enter the flame to function much in the same manner as does antimony trihaUde. [Pg.459]

For cases ia which one fluid is at constant temperature, S is often defined as equation 40 if T is constant, eg, boiling, and as equation 41 if is constant, eg, condensation. [Pg.487]

Liquid Helium-4. Quantum mechanics defines two fundamentally different types of particles bosons, which have no unpaired quantum spins, and fermions, which do have unpaired spins. Bosons are governed by Bose-Einstein statistics which, at sufficiently low temperatures, allow the particles to coUect into a low energy quantum level, the so-called Bose-Einstein condensation. Fermions, which include electrons, protons, and neutrons, are governed by Fermi-DHac statistics which forbid any two particles to occupy exactly the same quantum state and thus forbid any analogue of Bose-Einstein condensation. Atoms may be thought of as assembHes of fermions only, but can behave as either fermions or bosons. If the total number of electrons, protons, and neutrons is odd, the atom is a fermion if it is even, the atom is a boson. [Pg.7]

Dielectric Constant. Dielectric constant or specific inductive capacity (SIC) is both defined and measured by the ratio of the electric capacity of a condenser having that material as the dielectric to the capacity of the same condenser having air as the dielectric. The dielectric constant of vacuum is unity. Dry air has a constant slightly higher but for most practical purposes it is considered as unity. [Pg.325]

The only clearly defined crystalline compositions are three forms of phosphoric acid and hemihydrate, pyrophosphoric acid, and crystalline P O q. The phosphoric acids obtained in highly concentrated solutions or by mixing phosphoric acid with phosphoms pentoxide are members of a continuous series of amorphous (excluding [Y OO]) condensed phosphoric acid mixtures. Mixtures having more than 86% P2O5 contain some cyclic metaphosphoric... [Pg.329]

Condensed phosphates are derived by dehydration of acid orthophosphates. The resulting polymeric stmctures are based on a backbone of P—O—P linkages where PO tetrahedra are joined by shared oxygen atoms. The range of materials within this classification is extremely broad, extending from the simple diphosphate, also known as pyrophosphate, to indefinitely long-chain polyphosphates and ultraphosphates (see Table 1). Both weU-defined crystalline and amorphous materials occur among the condensed phosphates. [Pg.335]

An enrichment is defined as a separation process that results in the increase in concentration of one or mote species in one product stream and the depletion of the same species in the other product stream. Neither high purity not high recovery of any components is achieved. Gas enrichment can be accompHshed with a wide variety of separation methods including, for example, physical absorption, molecular sieve adsorption, equiHbrium adsorption, cryogenic distillation, condensation, and membrane permeation. [Pg.457]

The dye has been degraded by a fusion with caustic potash and the degradation products identified as various o-anilinyl mercaptans. They were identified and characterized by condensation with monochloroacetic acid to give the thioglycohc acids which, on acidification, were converted to well-defined crystalline lactams (2—4) together with a small amount of ji)-aminobenzoic acid. [Pg.163]

The 2ero and the interval of the KTTS are defined without reference to properties of any specific substance. Real measurements with real gas thermometers are much more difficult than the example suggests, and all real gases condense before 0 K is reached. [Pg.396]

Polytungsta.tes, An important and characteristic feature of the tungstate ion is its abiUty to form condensed complex ions of isopolytungstates in acid solution (38). As the acidity increases, the molecular weight of the isopolyanions increases until tungstic acid precipitates. However, the extensive investigations on these systems have been hampered by lack of weU-defined soHd derivatives. [Pg.289]

The generated water vapor rises through a screen (demister) placed to remove entrained saline water droplets. Rising further, it then condenses on the condenser tube bank, and internal heat recovery is achieved by transferring its heat of condensation to the seawater feed that is thus being preheated. This internal heat recovery is another of the primary advantages of the MSF process. The energy performance of distillation plants is often evaluated by the performance ratio, PR, typically defined as... [Pg.243]


See other pages where Condensations defined is mentioned: [Pg.199]    [Pg.199]    [Pg.1464]    [Pg.669]    [Pg.675]    [Pg.241]    [Pg.89]    [Pg.199]    [Pg.199]    [Pg.1464]    [Pg.669]    [Pg.675]    [Pg.241]    [Pg.89]    [Pg.850]    [Pg.884]    [Pg.887]    [Pg.891]    [Pg.1596]    [Pg.2456]    [Pg.569]    [Pg.450]    [Pg.2]    [Pg.113]    [Pg.141]    [Pg.247]    [Pg.339]    [Pg.31]    [Pg.76]    [Pg.3]    [Pg.244]    [Pg.514]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.339 ]




SEARCH



Claisen condensation defined

Condensation reactions defined

Defined condensers

Defined condensers

Retrograde condensation: defined

© 2024 chempedia.info