Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computational fluid dynamics using

This method has been devised as an effective numerical teclmique of computational fluid dynamics. The basic variables are the time-dependent probability distributions f x, f) of a velocity class a on a lattice site x. This probability distribution is then updated in discrete time steps using a detenninistic local rule. A carefiil choice of the lattice and the set of velocity vectors minimizes the effects of lattice anisotropy. This scheme has recently been applied to study the fomiation of lamellar phases in amphiphilic systems [92, 93]. [Pg.2383]

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

The simplest case of fluid modeling is the technique known as computational fluid dynamics. These calculations model the fluid as a continuum that has various properties of viscosity, Reynolds number, and so on. The flow of that fluid is then modeled by using numerical techniques, such as a finite element calculation, to determine the properties of the system as predicted by the Navier-Stokes equation. These techniques are generally the realm of the engineering community and will not be discussed further here. [Pg.302]

It has become quite popular to optimize the manifold design using computational fluid dynamic codes, ie, FID AP, Phoenix, Fluent, etc, which solve the full Navier-Stokes equations for Newtonian fluids. The effect of the area ratio, on the flow distribution has been studied numerically and the flow distribution was reported to improve with decreasing yiR. [Pg.497]

A numerical study of the effect of area ratio on the flow distribution in parallel flow manifolds used in a Hquid cooling module for electronic packaging demonstrate the useflilness of such a computational fluid dynamic code. The manifolds have rectangular headers and channels divided with thin baffles, as shown in Figure 12. Because the flow is laminar in small heat exchangers designed for electronic packaging or biochemical process, the inlet Reynolds numbers of 5, 50, and 250 were used for three different area ratio cases, ie, AR = 4, 8, and 16. [Pg.497]

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

The Prandtl mixing length concept is useful for shear flows parallel to walls, but is inadequate for more general three-dimensional flows. A more complicated semiempirical model commonly used in numerical computations, and found in most commercial software for computational fluid dynamics (CFD see the following subsection), is the A — model described by Launder and Spaulding (Lectures in Mathematical Models of Turbulence, Academic, London, 1972). In this model the eddy viscosity is assumed proportional to the ratio /cVe. [Pg.672]

Computation fluid mixing and computational fluid dynamic techniques have increasingly been used to elucidate solids distribution in agitated vessels [44],... [Pg.636]

With the widespread use of software packages to assist with computational fluid dynamics (CFD) of polymer flow situations, other types of viscosity relationships are also used. For example, the regression equation of Klien takes the form... [Pg.353]

Another detailed method of determining pressures is computational fluid dynamics (CFD), which uses a numerical solution of simplified equations of motion over a dense grid of points around the building. Murakami et al. and Zhoy and Stathopoulos found less agreement with computational fluid dynamics methods using the k-e turbulence model typically used in current commercial codes. More advanced turbulence models such as large eddy simulation were more successful but much more costly. ... [Pg.577]

Computational fluid dynamics (CFD) is becoming more popular, as discussed above for building pressures. However, a recent paper found difficulties in the practical use of current commercial codes due to the wide range of user inputs and decisions. - Other papers are exploring alternatives to the standard k- e model typically used in commercial codes today. -" ... [Pg.579]

In theory it should be possible to calculate the capture efficiency without measurements. Some attempts have used computational fluid dynamics (CFD) models, but difficulty modeling air movement and source characteristics have shown that it will be a long time before it will be possible to calculate the capture efficiency in advance. ... [Pg.825]

Computational fluid dynamics (CFD) is a very promising tool, and its use can be very helpful for analysis and design in industrial ventilation. It is suited for all types of problems where knowledge of a spatial distribution of flow quantities is desired, i.e., where local values at several locations are required. [Pg.1029]

The highest level of integration would be to establish one large set of equations and to apply one solution process to both thermal and airflow-related variables. Nevertheless, a very sparse matrix must be solved, and one cannot use the reliable and well-proven solvers of the present codes anymore. Therefore, a separate solution process for thermal and airflow parameters respectively remains the most promising approach. This seems to be appropriate also for the coupling of computational fluid dynamics (CFD) with a thermal model. ... [Pg.1096]

Computational fluid dynamics (CFD) The technique of using computers to provide an assessment of the flow of air and other fluids. [Pg.1423]

Computational fluid dynamics (CFD) is the numerical analysis of systems involving transport processes and solution by computer simulation. An early application of CFD (FLUENT) to predict flow within cooling crystallizers was made by Brown and Boysan (1987). Elementary equations that describe the conservation of mass, momentum and energy for fluid flow or heat transfer are solved for a number of sub regions of the flow field (Versteeg and Malalase-kera, 1995). Various commercial concerns provide ready-to-use CFD codes to perform this task and usually offer a choice of solution methods, model equations (for example turbulence models of turbulent flow) and visualization tools, as reviewed by Zauner (1999) below. [Pg.47]

As the large-scale computational fluid dynamics (CFD) simulations often invoke simplifying the kinetics as one-step overall reaction, the extraction of such bulk flame parameter as overall activation energy is especially useful when the CFD calculation with detailed chemistry is not feasible. Based on the experimental results, the deduced overall achvation energies of the three equivalence ratios are shown in Figure 4.1.10a. It can be observed that the variation of with is nonmonotonic and peaks near the stoichiometric condition. [Pg.42]

There are many nonintrusive experimental tools available that can help scientists to develop a good picture of fluid dynamics and transport in chemical reactors. Laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and sonar Doppler for velocity measurement, planar laser induced fluorescence (PLIF) for mixing studies, and high-speed cameras and tomography are very useful for multiphase studies. These experimental methods combined with computational fluid dynamics (CFDs) provide very good tools to understand what is happening in chemical reactors. [Pg.331]

So far, some researchers have analyzed particle fluidization behaviors in a RFB, however, they have not well studied yet, since particle fluidization behaviors are very complicated. In this study, fundamental particle fluidization behaviors of Geldart s group B particle in a RFB were numerically analyzed by using a Discrete Element Method (DEM)- Computational Fluid Dynamics (CFD) coupling model [3]. First of all, visualization of particle fluidization behaviors in a RFB was conducted. Relationship between bed pressure drop and gas velocity was also investigated by the numerical simulation. In addition, fluctuations of bed pressure drop and particle mixing behaviors of radial direction were numerically analyzed. [Pg.505]

Hydrodynamic Analysis of a Novel Photocatalytic Reactor Using Computational Fluid Dynamics... [Pg.669]

This study investigates the hydrodynamic behaviour of an aimular bubble column reactor with continuous liquid and gas flow using an Eulerian-Eulerian computational fluid dynamics approach. The residence time distribution is completed using a numerical scalar technique which compares favourably to the corresponding experimental data. It is shown that liquid mixing performance and residence time are strong functions of flowrate and direction. [Pg.669]

Computational fluid dynamics (CFD) programs are more specialized, and most have been designed to solve sets of equations that are appropriate to specific industries. They can then include approximations and correlations for some features that would be difficult to solve for directly. Four major packages widely used are Fluent (http //www.fluent.com/), CFX (now part of ANSYS), Comsol Multiphysics (formerly FEMLAB) (http //www.comsol.com/), and ANSYS (http //www.ansys.com/). Of these, Comsol Multiphysics is particularly useful because it has a convenient graphical-user interface, permits easy mesh generation and refinement (including adaptive mesh refinement), allows the user to add phenomena and equations easily, permits solution by continuation methods (thus enhancing... [Pg.58]

If one wants to model a process unit that has significant flow variation, and possibly some concentration distributions as well, one can consider using computational fluid dynamics (CFD) to do so. These calculations are very time-consuming, though, so that they are often left until the mechanical design of the unit. The exception would occur when the flow variation and concentration distribution had a significant effect on the output of the unit so that mass and energy balances couldn t be made without it. [Pg.89]


See other pages where Computational fluid dynamics using is mentioned: [Pg.101]    [Pg.673]    [Pg.1229]    [Pg.232]    [Pg.566]    [Pg.1116]    [Pg.518]    [Pg.844]    [Pg.1176]    [Pg.1180]    [Pg.1185]    [Pg.1546]    [Pg.1546]    [Pg.132]    [Pg.290]    [Pg.558]    [Pg.119]    [Pg.641]    [Pg.346]    [Pg.139]    [Pg.12]    [Pg.50]    [Pg.2]    [Pg.57]    [Pg.540]   
See also in sourсe #XX -- [ Pg.5 , Pg.7 ]




SEARCH



Basic Finite Volume Algorithms Used in Computational Fluid Dynamics

Computation fluid dynamics

Computational fluid

Computational fluid dynamics

Computational fluid dynamics emissions modeling using

Computational fluid dynamics materials processing modeling using

Computational fluid dynamics modeling using

Computational fluid dynamics predictions using

Computational fluid dynamics reactor modeling using

Computer use

Flow Modelling using Computational Fluid Dynamics

Fluid dynamics

© 2024 chempedia.info