Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numeric scalar

This study investigates the hydrodynamic behaviour of an aimular bubble column reactor with continuous liquid and gas flow using an Eulerian-Eulerian computational fluid dynamics approach. The residence time distribution is completed using a numerical scalar technique which compares favourably to the corresponding experimental data. It is shown that liquid mixing performance and residence time are strong functions of flowrate and direction. [Pg.669]

To establish the validity of the numerical scalar technique for RTD analysis, the normalized exit age distribution curve of both counter-current (Figure 1 (a-b)) and cocurrent (Figure 1 (c-d)) flow modes were compared. Table 1 shows that a good agreement was obtained between CFD simulation and experimental data. [Pg.670]

In order to test the various approximations of the Coulomb matrix, all electron basis set and numerical scalar scaled ZORA calculations have been performed on the xenon and radon atom. The numerical results have been taken from a previous publication [7], where it should be noted that the scalar orbital energies presented here are calculated by averaging, over occupation numbers, of the two component (i.e. spin orbit split) results. Tables (1) and (2) give the orbital energies for the numerical (s.o. averaged) and basis set calculations for the various Coulomb matrix approximations. The results from table... [Pg.256]

Our choice for the non-linear system approach to PARC is the ANN. The ANN is composed of many neurons configured in layers such that data pass from an input layer through any number of middle layers and finally exit the system through a final layer called the output layer. In Fig. 4 is shown a diagram of a simple three-layer ANN. The input layer is composed of numeric scalar data values, whereas the middle and output layers are composed of artificial neurons. These artificial neurons are essentially weighted transfer functions that convert their inputs into a single desired output. The individual layer components are referred to as nodes. Every input node is connected to every middle node, and every middle node is connected to every output node. [Pg.121]

Petera, J., Nassehi, V. and Pittman, J.F.T., 1989. Petrov-Galerkiii methods on isoparametric bilinear and biquadratic elements tested for a scalar convection-diffusion problem. Ini.. J. Numer. Meth. Heat Fluid Flow 3, 205-222,... [Pg.68]

Just to remind you, the electron density and therefore the exchange potential are both scalar fields they vary depending on the position in space r. We often refer to models that make use of such exchange potentials as local density models. The disagreement between Slater s and Dirac s numerical coefficients was quickly resolved, and authors began to write the exchange potential as... [Pg.214]

The fact that we are discussing an abstract space means that we know only that its elements (vectors) have the postulated properties e.g., that a scalar product exists, but at this level of the discussion we do not know the numerical value of the scalar product. We may choose at random some familiar collection of elements, perhaps the set of all ordered pairs of real numbers (n,m) or the set of all differentiable functions of position on a line, etc., and ask whether or not they form a Hilbert space. If they do, then we can in fact evaluate the scalar... [Pg.427]

The quantum states of Schrodinger s theory constitute an example of Hilbert space, and their scalar product has a direct physical meaning. Any such example of Hilbert space, where we can actually evaluate the scalar products numerically, is called a representation of Hilbert space. We shall continue discussing the properties of abstract Hilbert space, so that all our conclusions will apply to any and every representation. [Pg.428]

Hawkes, E.R., S. Sankaran, J.C. Sutherland, and J.H. Chen, Scalar mixing in direct numerical simulations of temporally-evolving plane jet flames with detailed CO/Hj kinetics. Proc. Combust. Inst., 2007. 31 1633-1640. [Pg.168]

If not otherwise stated the four-component Dirac method was used. The Hartree-Fock (HF) calculations are numerical and contain Breit and QED corrections (self-energy and vacuum polarization). For Au and Rg, the Fock-space coupled cluster (CC) results are taken from Kaldor and co-workers [4, 90], which contains the Breit term in the low-frequency limit. For Cu and Ag, Douglas-Kroll scalar relativistic CCSD(T) results are used from Sadlej and co-workers [6]. Experimental values are from Refs. [91, 92]. [Pg.190]

Producing a reasonably good accuracy for analytically defined surfaces, this scheme of calculation is very inaccurate when the field is specified by the discrete set of values (the lattice scalar field). The surface in this case is located between the lattice sites of different signs. The first, second, and mixed derivatives can be evaluated numerically by using some finite difference schemes, which normally results in poor accuracy for discrete lattices. In addition, the triangulation of the surface is necessary in order to compute the integral in Eq. (8) or calculate the total surface area S. That makes this method very inefficient on a lattice in comparison to the other methods. [Pg.221]

Data obtained from environmental monitoring programs can be classified, according to their complexity, in data ordered in one direction (one-way data), two directions (two-way data), three directions (three-way data), and in multiple directions (multiway data) [9, 10]. Scalar numerical data (one variable measured in one sample) would correspond to data ordered in zero direction (zero-way), while vector data (for instance, different variables measured in one sample or one variable measured in different samples) are ordered in one direction. When different variables are measured in different samples, obtained data can be ordered in two directions, that is, in a data table or data matrix. Finally, the compilation of different... [Pg.335]

The concept of potential energy in mechanics is one example of a scalar field, defined by a simple number that represents a single function of space and time. Other examples include the displacement of a string or a membrane from equilibrium the density, pressure and temperature of a fluid electromagnetic, electrochemical, gravitational and chemical potentials. All of these fields have the property of invariance under a transformation of space coordinates. The numerical value of the field at a point is the same, no matter how or in what form the coordinates of the point are expressed. [Pg.107]

The material covered in the appendices is provided as a supplement for readers interested in more detail than could be provided in the main text. Appendix A discusses the derivation of the spectral relaxation (SR) model starting from the scalar spectral transport equation. The SR model is introduced in Chapter 4 as a non-equilibrium model for the scalar dissipation rate. The material in Appendix A is an attempt to connect the model to a more fundamental description based on two-point spectral transport. This connection can be exploited to extract model parameters from direct-numerical simulation data of homogeneous turbulent scalar mixing (Fox and Yeung 1999). [Pg.17]

RTD functions for combinations of ideal reactors can be constructed (Wen and Fan 1975) based on (1.6) and (1.7). For non-ideal reactors, the RTD function (see example in Fig. 1.4) can be measured experimentally using passive tracers (Levenspiel 1998 Fogler 1999), or extracted numerically from CFD simulations of time-dependent passive scalar mixing. [Pg.27]

Chasnov (1994) has carried out detailed studies of inert-scalar mixing at moderate Reynolds numbers using direct numerical simulations. He found that for decaying scalar fields the scalar spectrum at low wavenumbers is dependent on the initial scalar spectrum, and that this sensitivity is reflected in the mechanical-to-scalar time-scale ratio. Likewise, R is found to depend on both the Reynolds number and the Schmidt number in a non-trivial manner for decaying velocity and/or scalar fields (Chasnov 1991 Chasnov 1998). [Pg.97]

Direct numerical simulation studies of turbulent mixing (e.g., Ashurst et al. 1987) have shown that the fluctuating scalar gradient is nearly always aligned with the eigenvector of the most compressive strain rate. For a fully developed scalar spectrum, the vortexstretching term can be expressed as... [Pg.106]

This chapter is devoted to methods for describing the turbulent transport of passive scalars. The basic transport equations resulting from Reynolds averaging have been derived in earlier chapters and contain unclosed terms that must be modeled. Thus the available models for these terms are the primary focus of this chapter. However, to begin the discussion, we first review transport models based on the direct numerical simulation of the Navier-Stokes equation, and other models that do not require one-point closures. The presentation of turbulent transport models in this chapter is not intended to be comprehensive. Instead, the emphasis is on the differences between particular classes of models, and how they relate to models for turbulent reacting flow. A more detailed discussion of turbulent-flow models can be found in Pope (2000). For practical advice on choosing appropriate models for particular flows, the reader may wish to consult Wilcox (1993). [Pg.119]

During the time intervals between random eddy events, (4.37) is solved numerically using the scalar fields that result from the random rearrangement process as initial conditions. A standard one-dimensional parabolic equation solver with periodic boundary conditions (BCs) is employed for this step. The computational domain is illustrated in Fig. 4.3. For a homogeneous scalar field, the evolution of t) will depend on the characteristic length... [Pg.131]

The turbulence models discussed in this chapter attempt to model the flow using low-order moments of the velocity and scalar fields. An alternative approach is to model the one-point joint velocity, composition PDF directly. For reacting flows, this offers the significant advantage of avoiding a closure for the chemical source term. However, the numerical methods needed to solve for the PDF are very different than those used in standard CFD codes. We will thus hold off the discussion of transported PDF methods until Chapters 6 and 7 after discussing closures for the chemical source term in Chapter 5 that can be used with RANS and LES models. [Pg.159]

Note that the numerical simulation of the turbulent reacting flow is now greatly simplified. Indeed, the only partial-differential equation (PDE) that must be solved is (5.100) for the mixture-fraction vector, which involves no chemical source term Moreover, (5.151) is an initial-value problem that depends only on the inlet and initial conditions and is parameterized by the mixture-fraction vector it can thus be solved independently of (5.100), e.g., in a pre(post)-processing stage of the flow calculation. For a given value of , the reacting scalars can then be stored in a chemical lookup table, as illustrated in Fig. 5.10. [Pg.197]

The reduction of the turbulent-reacting-flow problem to a turbulent-scalar-mixing problem represents a significant computational simplification. However, at high Reynolds numbers, the direct numerical simulation (DNS) of (5.100) is still intractable.86 Instead, for most practical applications, the Reynolds-averaged transport equation developed in... [Pg.197]


See other pages where Numeric scalar is mentioned: [Pg.714]    [Pg.26]    [Pg.27]    [Pg.843]    [Pg.714]    [Pg.26]    [Pg.27]    [Pg.843]    [Pg.141]    [Pg.110]    [Pg.260]    [Pg.101]    [Pg.148]    [Pg.198]    [Pg.143]    [Pg.53]    [Pg.192]    [Pg.245]    [Pg.121]    [Pg.214]    [Pg.237]    [Pg.251]    [Pg.598]    [Pg.100]    [Pg.377]    [Pg.121]    [Pg.130]    [Pg.198]   


SEARCH



Scalar

© 2024 chempedia.info