Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounding basic principles

Phase-transfer catalysis (PTC) is the most widely used method for solving the problem of the mutual insolubility of nonpolar and ionic compounds. Basic principles, synthetic uses, industrial applications of PTC, and its advantages over conventional methods are well documented [1-3]. PTC has become a powerful and widely accepted tool for organic chemists due to its efficiency, simplicity, and cost effectiveness. The main merit of the method is its universality. It may be applied to many types of reactions involving diverse classes of compounds. An important feature of PTC is its computability with other methods for the intensification of biphasic reactions (sonolysis, photolysis, microwaving, etc.) as well as with other types of catalysis, in particular, with transition-metal-complex catalysis. Homogeneous metal-complex catalysis under PTC conditions involves the simul-... [Pg.953]

Both 2-hydroxythiazoie and 2-mercaptothiazoIe have been studied to determine the position of the protomeric equilibrium 43 7 43a 43b (Scheme 17). Most studies indicate that form 43a is largely predominant in neutral solution for X = 0 and X=S (52-56, 887, 891). The basic principle is to compare a physical property of the investigated product with that of a model representative of each protomeric form. The similarity of physicochemical properties between the product and one of the model compounds is taken as evidence for the position of the protomeric equilibrium. The limits of such an approach have been discussed in detail elsewhere (57). [Pg.377]

J. W. Crary, Ethylene/Mery lie Elastomer—Basic Principles of Compounding and Processing, Bulletin EA-030.0482, Du Pont Polymers, Stow, Ohio, Apr. 1982. [Pg.501]

We shall first review the basic principles of VASP and than describe exemplary applications to alloys and compounds (a) the calculation of the elastic and dynamic properties of a metallic compound (CoSi2), (b) the surface reconstruction of a semiconducting compound (SiC), and (c) the calculation of the structural and electronic properties of K Sbi-j, Zintl-phases in the licpiid state. [Pg.70]

In six-membered rings containing heteroatoms, the basic principles are the same that is, there are chair, twist, and boat forms, axial and equatorial groups, and so on. The conformational equilibrium for tetrahydropyridines, for example has been studied. In certain compounds, a number of new factors enter the picture. We deal with only two of these. ... [Pg.175]

The text is divided into three parts. The first deals with the basic principles underlying the environmental behavior and effects of organic pollutants the second describes the properties and ecotoxicology of major pollutants in reasonable detail the last discusses some issues that arise after consideration of the material in the second part of the text, and looks at future prospects. The groups of compounds represented in the second part of the book are all regarded as pollutants rather than simply contaminants, because they have the potential to cause adverse biological effects at realistic environmental levels. In most cases these effects have been well documented under environmental conditions. The term adverse effects includes harmful effects upon individual organisms, as well as effects at the level of population and above. [Pg.432]

Because of their ease of synthesis and their structural similarity to peptides, many laboratories have used peptoids as the basis for combinatorial drug discovery. Peptoids were among the first non-natural compounds used to establish the basic principles and practical methods of combinatorial discovery [17]. Typically, diverse libraries of relatively short peptoids (< 10 residues) are synthesized by the mix-and-split method and then screened for biological activity. Individual active compounds can then be identified by iterative re-synthesis, sequencing of compounds on individual beads, or indirect deduction by the preparation of positional scanning libraries. [Pg.6]

The story of the ozone hole illustrates how important it is to learn the molecular details of chemical reactions. Some chemists use information about how reactions occur to design and synthesize useful new compounds. Others explore how to modify reaction conditions to minimize the cost of producing industrial chemicals. This chapter explores how chemical reactions occur at the molecular level. We show how to describe a reaction from the molecular perspective, introduce the basic principles that govern these processes, and describe some experimental methods used to study chemical reactions. [Pg.1047]

The underlying mechanisms involved in the activities of carotenoid oxidation products are due either to a possible role as precursors of retinoids that would be the active species for positive effects or to their own specific activities. This latter case is illustrated by the activity of non-provitamin A carotenoid oxidation products such as those derived from lycopene. However, biological effects of carotenoid oxidation products other than retinoids are only hypothesized in vivo in humans, which hypothesis has been used as the basic principle to justify in vitro studies of these compounds. [Pg.187]

Both SPE and LLE involve a partitioning of compounds between two phases solid and liquid for SPE and two immiscible liquids for LLE. As modem SPE is a technique in which the basic principles of liquid chromatography are used to isolate the compound(s) of... [Pg.125]

The next chapter will discuss the nature of energy and the ways in which it can be incorporated into chemicals using the basic principles of chemistry and geochemistry set out in Chapters 1 and 2 so as to create what we know as a system called life locked into the environment, the total ecosystem. (Note Heat is given out in small amounts even in the forward step but we shall ignore it here and elsewhere.) Importantly notice that equilibria limit the diversity of particularly inorganic compounds and complexes but are not usually relevant to the discussion of the properties... [Pg.75]

In this chapter many of the basic principles related to structure and bonding in molecules have already been illustrated. However, there is another type of compound that is not satisfactorily described by the principles illustrated so far. The simplest molecule of this type is diborane, B2H6. The problem is that there are only 10 valence shell electrons available for use in describing the bonding in this molecule. [Pg.125]

Some of the important types of coordination compounds occur in biological systems (for example, heme and chlorophyll). There are also significant applications of coordination compounds that involve their use as catalysts. The formation of coordination compounds provides the basis for several techniques in analytical chemistry. Because of the relevance of this area, an understanding of the basic theories and principles of coordination chemistry is essential for work in many related fields of chemistry. In the next few chapters, an introduction will be given to the basic principles of the chemistry of coordination compounds. [Pg.577]

The applications of coordination compounds in catalysis that have been shown are by no means the only important cases. In fact, there are numerous reactions in which homogeneous catalysis forms the basis for a great deal of chemistry. From the examples shown, it should be apparent that this is a vast and rapidly developing field. It is also one that is important from an economic standpoint. Although the basic principles have been described in this chapter, the literature related to catalysis is extensive. For further details and more comprehensive reviews of the literature, consult the references listed. [Pg.802]

After a decade of research the basic principles in the chemistry of decamethylsilicocene (1) seem to be understood. This compound shows the reactivity of a nucleophilic silylene due to the fact that the Tt-bonded pentamethylcyclopentadienyl ligands are easily transferred to a-bonded substituents during the reaction. The steric requirements of these substituents permit reactions with bulky substrates. The migratory aptitude and the leaving-group character of the pentamethylcyclopentadienyl groups... [Pg.31]

Gas-Liquid Chromatography. In gas-liquid chromatography (GLC) the stationary phase is a liquid. GLC capillary columns are coated internally with a liquid (WCOT columns) stationary phase. As discussed above, in GC the interaction of the sample molecules with the mobile phase is very weak. Therefore, the primary means of creating differential adsorption is through the choice of the particular liquid stationary phase to be used. The basic principle is that analytes selectively interact with stationary phases of similar chemical nature. For example, a mixture of nonpolar components of the same chemical type, such as hydrocarbons in most petroleum fractions, often separates well on a column with a nonpolar stationary phase, while samples with polar or polarizable compounds often resolve well on the more polar and/or polarizable stationary phases. Reference 7 is a metabolomics example of capillary GC-MS. [Pg.107]

In Pharmaceutical and Clinical Calculations, second edition, Drs. Mansoor Khan and Indra Reddy have provided a contemporary resource that can help pharmacy students learn the basic principles of how to accurately interpret prescriptions and medication orders, measure, calculate and compound quality dosage forms. In the latter chapters, the student can learn multiple methods to accurately and safely dose patients. The computational methods to accomplish these ends are clearly presented, and the examples used to demonstrate the concepts are relevant to contemporary practice. Pharmacy students will... [Pg.8]

H. Noth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, in NMR - Basic Principles and Progress, P. Diehl, E. Fluck, R. Kosfeld, eds., Vol. 14, Springer Verlag, Berlin-Heidelberg-New York, 1978. [Pg.308]

Abstract The basic principles of the oxidative carbonylation reaction together with its synthetic applications are reviewed. In the first section, an overview of oxidative carbonylation is presented, and the general mechanisms followed by different substrates (alkenes, dienes, allenes, alkynes, ketones, ketenes, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, phenols, amines) leading to a variety of carbonyl compounds are discussed. The second section is focused on processes catalyzed by Pdl2-based systems, and on their ability to promote different kind of oxidative carbonylations under mild conditions to afford important carbonyl derivatives with high selectivity and efficiency. In particular, the recent developments towards the one-step synthesis of new heterocyclic derivatives are described. [Pg.244]

The basic principle of EFA is very simple. Instead of subjecting the complete matrix Y to the Singular Value Decomposition, specific sub-matrices of Y are analysed. In the original EFA, these sub-matrices are formed by the first i spectra of Y where i increases from 1 to the total number of spectra, ns. The appearance of a new compound during the acquisition of the data is indicated by the emergence of a new significant singular value. [Pg.260]


See other pages where Compounding basic principles is mentioned: [Pg.192]    [Pg.19]    [Pg.265]    [Pg.83]    [Pg.48]    [Pg.382]    [Pg.780]    [Pg.1]    [Pg.9]    [Pg.2]    [Pg.575]    [Pg.181]    [Pg.12]    [Pg.27]    [Pg.38]    [Pg.872]    [Pg.65]    [Pg.504]    [Pg.64]    [Pg.69]    [Pg.128]    [Pg.163]    [Pg.142]    [Pg.3]    [Pg.190]    [Pg.2]    [Pg.18]    [Pg.488]    [Pg.293]   


SEARCH



Basic compounds

Compounding principles

© 2024 chempedia.info