Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composition crystal polymers

In the late 1980s, new fully aromatic polyester fibers were iatroduced for use ia composites and stmctural materials (18,19). In general, these materials are thermotropic Hquid crystal polymers that are melt-processible to give fibers with tensile properties and temperature resistance considerably higher than conventional polyester textile fibers. Vectran (Hoechst-Celanese and Kuraray) is a thermotropic Hquid crystal aromatic copolyester fiber composed of -hydroxyben2oic acid [99-96-7] and 6-hydroxy-2-naphthoic acid. Other fully aromatic polyester fiber composites have been iatroduced under various tradenames (19). [Pg.325]

CH2—CI2—) —(—CF2— CFH—) (39). Ceramic crystals have a higher piezoelectric efficiency. Their high acoustic impedance compared to body tissues necessitates impedance matching layers between the piezoelectric and the tissue. These layers are similar in function to the antireflective coatings on a lens. Polymer piezoelectric materials possess a more favorable impedance relative to body tissues but have poorer performance characteristics. Newer transducer materials are piezoelectric composites containing ceramic crystals embedded in a polymer matrix (see Composite materials, polymer-MATRIX Piezoelectrics). [Pg.52]

The data presented in Figure 8 graphically illustrate the tremendous and rapid growth in interest in FOSS chemistry, especially for patented applications. This looks set to continue with current applications in areas as diverse as dendrimers, composite materials, polymers, optical materials, liquid crystal materials, atom scavengers, and cosmetics, and, no doubt, many new areas to come. These many applications derive from the symmetrical nature of the FOSS cores which comprise relatively rigid, near-tetrahedral vertices connected by more flexible siloxane bonds. The compounds are usually thermally and chemically stable and can be modified by conventional synthetic methods and are amenable to the usual characterization techniques. The recent commercial availability of a wide range of simple monomers on a multigram scale will help to advance research in the area more rapidly. [Pg.104]

Report 3 Advanced Composites, D.K. Thomas, RAE, Famborough. Report 4 Liquid Crystal Polymers, M.K. Cox, ICI, Wilton. Report 5 CAD/CAM in the Polymer Industry, N.W. Sandland and M.J. Sebbom, Cambridge Applied Technology. Report 8 Engineering Thermoplastics, I.T. Barrie, Consultant. Report 11 Communications Apphcations of Polymers,... [Pg.131]

Kevlar has the highest tensile strength and is often used as a reinforcing fibre in composites with, e.g., epoxy, PEEK. The thermotropic liquid crystal polymer Vectran is made by melt polymerisation of p-acetoxybenzoic acid and 6-acetoxy-2-naphthoic acid, (the corresponding hydroxy acids decompose on melting). Because of its liquid crystal properties the polymer can be spun into fibres from the melt. Kevlar is spun from a solution in concentrated sulfuric acid, and can be melt drawn to give a high modulus (stiff) polymer. Vectran ... [Pg.86]

To produce novel LC phase behavior and properties, a variety of polymer/LC composites have been developed. These include systems which employ liquid crystal polymers (5), phase separation of LC droplets in polymer dispersed liquid crystals (PDLCs) (4), incorporating both nematic (5,6) and ferroelectric liquid crystals (6-10). Polymer/LC gels have also been studied which are formed by the polymerization of small amounts of monomer solutes in a liquid crystalline solvent (11). The polymer/LC gel systems are of particular interest, rendering bistable chiral nematic devices (12) and polymer stabilized ferroelectric liquid crystals (PSFLCs) (1,13), which combine fast electro-optic response (14) with the increased mechanical stabilization imparted by the polymer (75). [Pg.17]

Aerosol spray delivery, 23 196 Aerosol sprays, 7 773-774 Aerospace applications aluminum alloys, 2 340 artificial graphite in, 72 740-741 for high performance fibers, 13 397-398 of liquid-crystal polymers, 20 85 metal-matrix composites in, 16 191 polyimide matrix composites in, 20 284 Aerospace bearings, corrosion resistance of, 74 452... [Pg.21]

We are currently initiating three research projects that include (1) the synthesis of reflective liquid crystal/polymer composite films, (2) a study of microphase separation in hyperbranched block copolymers, and (3) the design and synthesis of polar organic thin films, which is the subject of this proposal. (47 words aim for 41 words)... [Pg.430]

Note Nucleation may be classified as primary or secondary. Primary nucleation can be homogeneous or heterogeneous if heterogeneous nucleation is initiated by entities having the same composition as the crystallizing polymer, it is called self-nucleation. Secondary nucleation is also known as surface nucleation. [Pg.89]

It is the intent of this doeument to define the terms most commonly encountered in the field of polymer blends and eomposites. The scope has been limited to mixtures in which the eomponents differ in ehemical composition or molar mass or both and in which the continuous phase is polymeric. Many of the materials described by the term multiphase are two-phase systems that may show a multitude of finely dispersed phase domains. Hence, incidental thermodynamic descriptions are mainly limited to binary mixtures, although they can be and, in the scientific literature, have been generalized to multicomponent mixtures. Crystalline polymers and liquid-crystal polymers have been considered in other documents [1,2] and are not discussed here. [Pg.186]

Holographic optical elements can also be made by the preparation of polymer-dispersed liquid crystals using twin lasers in transmission holographic photopolymerisation (see section 5.4.2). They have also been made using photorefractive composites of polymer dispersed liquid crystals (see section 5.6.3). [Pg.321]

Title Liquid-Crystal Compositions and Polymer Networks Derived Therefrom... [Pg.91]

In addition to the opportunities for new materials synthesis and characterization along these lines, transport properties, rheology, and processing techniques for liquid crystal polymers are essentially unexplored. Experiences with synthesis of polymer structure based on these liquid crystal templates may open up other creative avenues for template synthesis, for example, inside other crystalline structures, chlathrates, or zeolites, or on surfaces [4], Composites, alloys, or mixtures of liquid crystalline and flexible polymers may produce new materials. [Pg.329]

During the initial polymerization of trioxane with (C4H9)2OBF3 in melt or solution, no solid polymer is formed, and the reaction medium remains clear. Using a high resolution NMR spectroscope, C. S. H. Chen and A. Di Edwardo observed the appearance of soluble linear polyoxy-methylene chains. In the cationic copolymerization of trioxane with 1,3-dioxolane, V. Jaacks found also that a soluble copolymer forms first and turns later into a crystalline copolymer of different composition. Crystallization and polymerization proceed simultaneously in the solid phase. [Pg.12]

RPs that combine two different materials (plastic matrix and reinforcement) are a separate major and important segment in the plastic industry. They are also called plastic composites and composites. There are also self-reinforcing plastics such as liquid crystal polymers (Chapter 1) and others.301 It is a fact that RPs have not come near to realizing their great potential in a multitude of applications usually due to cost limitations that particularly involves the use of expensive fiber reinforcements (carbon, graphite, silica, etc.).1 Information on thermoplastic and thermoset plastic RPs are reviewed in Chapter 15. [Pg.118]

Experimentally observed values, measured for crystallizing polymer (polyethylene) compositions are somewhat higher than L , as calculated by (29). It is possible to explain this fact by the reduced heat release at PE-keroplast crystallization as compared to the basic polymer (see Eq. (23)). In all cases, the difference between experimental and calculated by (29) L , values never exceeded 15%. Therefore, Eq. (29) can be recommended for engineering calculation of the length of filling the moulding form of any thermoplast. [Pg.22]

Yainane, H., Kikuchi, H., and Kajiyama, T. Laser-addressing rewritable optical information storage of (liquid crystalline side chain copylymer/liquid crystals/photo-responsivc molecule) ternary composite systems. Polymer 40, 4777 (1999). [Pg.174]

As pointed out above, the semicrystalline polymer can be considered as a two-phase composite of amorphous regions sandwiched between hard crystalline lamellae (Fig. 4.2(a)). Crystal lamellae ( c) are normally 10-25 nm thick and have transverse dimensions of 0.1-1 pm while the amorphous layer thickness, a, is 5-10 nm. As mentioned in the previous section, melt-crystallized polymers generally exhibit a spherulitic morphology in which ribbon-like lamellae are arranged radially in the polycrystalline aggregate (Bassett, 1981). Since the indentation process involves plastic yielding under the stress field of the indenter, microhardness is correlated to the modes of deformation of the semicrystalline polymers (see Chapter 2). These... [Pg.90]

One suggestion for what may occur when blends of two liquid crystal polymers are produced is that an ester exchange reaction will occur and a single copolymer with intermediate composition will result. Such an issue has been addressed in the work of Mehta and Baird (13).The present results suggest that such is not the case for this system. If a single random copolymer of intermediate composition was being produced in the present system, a peak centered at 12.56 A is expected. Instead, a peak centered at 12.85 A is observed. The difference between the expected result and the observed result is outside of experimental error. [Pg.447]

Electrodeposition is a unique, versatile technique for fabrication of metal oxide, polymer, and composite electrodes for electrochemical supercapacitors. Composition, crystal structure, and morphology of the deposits can be easily manipulated by adjusting the electrodeposition parameters to achieve improved capacitive behavior. Current progress, however, is far from the commercial expectations for electrochemical supercapacitors. [Pg.146]

More recently,thin walled articles have been fabricated by blow-molding composites of liquid crystal polymer (LCP) and expanded porous polydetrafluoroethylene sheetingl l material. Container application examples include food and pharmaceuticals, automotive gas tanks, bottles, and other vessels. Unlike most other thermoplastic polymers, thermotropic LCP forms high-viscosity melts that have thixotropic characteristics. Applying shear force to the melt substantially alters the melt viscosity of LCP and the orientation of its polymer domains. These attributes are useful to... [Pg.247]


See other pages where Composition crystal polymers is mentioned: [Pg.126]    [Pg.126]    [Pg.151]    [Pg.423]    [Pg.618]    [Pg.212]    [Pg.16]    [Pg.665]    [Pg.685]    [Pg.15]    [Pg.25]    [Pg.423]    [Pg.151]    [Pg.2227]    [Pg.6]    [Pg.342]    [Pg.358]    [Pg.588]    [Pg.301]    [Pg.322]    [Pg.232]    [Pg.143]    [Pg.452]    [Pg.1976]   
See also in sourсe #XX -- [ Pg.116 , Pg.125 ]




SEARCH



Crystal composites

Crystallization composites

© 2024 chempedia.info