Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Component power supply

The basic apparatus necessary for a capillary electrophoresis system is shown in Fig. 2. The instrument must have the following components power supply, electrodes (anode and cathode), vials for electrodes and buffers, separation capillary, detector, and data... [Pg.289]

It should be noted, however, that it is necessary to put numerous mechanical components (pipes, pumps, etc.), electrical components (power supply), electronics (BMS) and regulators (e.g. to regulate the flowrate of fluids depending on the power requirement) in place around the core of the battery. [Pg.342]

The HILL-SCAN 30XX boards can be used in different PCs. Desktop- and tower-PCs as well suited for laboratory uses. For in-field inspections rugged notebooks and portable PCs are advantageous. A typical portable system is shown in Fig. 2 (USPC 3010), used in MUSE (Mobile Ultrasonic Equipment). This portable PC not only contains the boards for ultrasonic testing but also a controller with power supply for stepper motors, so that a manipulator can be connected directly. The MUSE system is enlarged with a water circulation system which enables a local immersion technique" for in-field inspections. A typical result is shown in Fig. 3, which presents a D-scan of a CFRP- component in RTM-techniques. The defect area caused by an impact is clearly indicated. The manipulator is described in [3]. [Pg.859]

In addition to the controlling computer the system contains only a small control unit - PSP-4 (weight approx. 5 kg.) which among other system components includes a motor control system integrated closely with the PS-4 ultrasonic system. For communication between the PSP-4 control unit and the robot as well as robot power supply is used a single cable less than 10 mm. in diameter. [Pg.870]

The essential components of an electroplating process are an electrode to be plated (the cathode) a second electrode to complete the circuit (the anode) an electrolyte containing the metal ions to be deposited and a d-c power source. The electrodes are immersed in the electrolyte such that the anode is coimected to the positive leg of the power supply and the cathode to the negative. As the current is increased from 2ero, a minimum point is reached where metal plating begins to take place on the cathode. The physics of this process has been the topic of many studies, and several theories have been proposed. A discussion of these theories can be found elsewhere (19). [Pg.145]

Peripheral Components In addition to the stack, a power supply, pumps for diluate and concentrate, instrumentation, tanks for cleaning, and other peripherals are required. Safety devices are mandatoiy given the dangers posed by electricity, hydrogen, and chlorine. [Pg.2032]

A power system is connected to a number of power supply machines that determine the fault level of that. system (e.g. generators and transformers). The impedances of all such equipment and the impedances of the interconnecting cables and overhead lines etc. are the parameters that limit the fault level of the system. For ease of calculation, when determining the fault level of such a system it is essential to consider any one major component as the base and convert the relevant parameters of the other equipment to that base, for a quicker calculation, to establish the required fault level. Below we provide a few common formulae for the calculation of faults on a p.u. basis. For more details refer to a textbook in the references. [Pg.356]

These ac current loops should be routed before any other traces in the power supply. The three major components that make up each loop the filter capacitor, the power switch or rectifier, and the inductor or transformer must be located adjacent to one another. The components must also be oriented such that the current path between them is as short as possible. A good example of a layout of the power section of a buck (or step-down) converter can be seen in Figure 3-60. [Pg.96]

To improve the efficiency of a switching power supply, one must be able to identify and roughly quantify the various losses. Tosses within a switching power supply roughly fall into four categories switching, conduction, quiescent, and resistive losses. These losses usually occur in combination within any lossy component and are treated separately. [Pg.135]

Quasi-resonant and resonant transition switching power supplies have a much more attractive radiated spectral shape. This is because the transitions are forced to be at a lower frequency by the resonant elements, hence only the low frequency spectral components are exhibited (below 30MHz). The lower rate of change during the transitions are responsible for behavior. The higher frequency spectral components are almost non existent. The near-held radiated spectrum of a quasi-resonant, hyback converter are shown in Figure E-2. The quasi-resonant and soft switching families of converters are much quieter and easier to hlter. [Pg.242]

Another major source of noise is the loop consisting of the output rectifiers, the output filter capacitor, and the transformer secondary windings. Once again, high-peak valued trapezoidal current waveforms flow between these components. The output Alter capacitor and rectifier also want to be located as physically close to the transformer as possible to minimize the radiated noise. This source also generates common-mode conducted noise mainly on the output lines of the power supply. [Pg.244]

The facility costs are based on the concept of a mobile remote repair facility. The advantages of this concept are low-cost, minimal shielding requirements, and flexible use of the overall repair facility. The main components for a remote repair are the electron accelerator, the power supply, and the robotic control system including the remote video system. Table 14 shows the estimated costs for these main components. [Pg.1034]

Accident progression scenarios are developed and modeled as event trees for each of these accident classes. System fault trees are developed to the component level for each branch point, and the plant response to the failure is identified. Generic subtrees are linked to the system fault trees. An example is "loss of clcciric power" which is analyzed in a Markov model that considers the frequencies of lo,sing normal power, the probabilities of failure of emergency power, and the mean times to repair parts of the electric power supply. [Pg.418]

They are designed to provide a flexible link between a power supply, such as a hydraulic cylinder, and another machine component. Leaf chains do not have any rollers or other sprocket-engaging device. They are designed with connector links located at each end of the chain that can be used to connect the drive and driven machine components. [Pg.985]

The excitation of the analytical lines depends approximately on the square of the x-ray tube voltage (1.5) and is therefore very sensitive to the regulation of the high-voltage power supply. The performance of the other components of the x-ray spectrograph is not so sensitive to power supply regulation. It is usually convenient to regulate the entire power supply to the instrument because the x-ray tube is the major part of the load. [Pg.244]

Other thermal zones which should be thermostated separately from the column oven include the Injector and detector ovens. These are generally insulted metal blocks heated by cartridge heaters controlled by sensors located in a feedback loop with the power supply. Detector blocks are usually maintained at a temperature selected to minimize detector contamination from condensation of column bleed or sample components and to optimize the response of the detector to the sample. The requirements for i injectors may be different depending on the injector design and may include provision for temperature program operation. [Pg.123]

DVD power supply with integrated power IC < 40 components... [Pg.20]

The task is daunting—a typical switching power supply, for all its apparent simplicity (at least in terms of the typical number of components on the board), probably constitutes one of the most difficult challenges of modern electronics. A simple symptom such as an overheated or unreliable transistor switch may rack the brains of even an experienced... [Pg.24]


See other pages where Component power supply is mentioned: [Pg.335]    [Pg.43]    [Pg.257]    [Pg.277]    [Pg.335]    [Pg.43]    [Pg.257]    [Pg.277]    [Pg.326]    [Pg.214]    [Pg.474]    [Pg.88]    [Pg.796]    [Pg.2535]    [Pg.8]    [Pg.9]    [Pg.28]    [Pg.93]    [Pg.100]    [Pg.220]    [Pg.232]    [Pg.236]    [Pg.242]    [Pg.94]    [Pg.75]    [Pg.138]    [Pg.97]    [Pg.35]    [Pg.275]    [Pg.20]    [Pg.56]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Power supplied

Power supplies

© 2024 chempedia.info